Please wait a minute...
金属学报  2009, Vol. 45 Issue (11): 1281-1287    
  论文 本期目录 | 过刊浏览 |
回火马氏体中合金碳化物的3D原子探针表征 I. 形核
刘庆冬1; 2); 刘文庆1); 王泽民1) ; 周邦新1)
1) 上海大学分析测试中心; 上海 200444
2) 江苏省(沙钢)钢铁研究院; 苏州 215625
3D ATOM PROBE CHARACTERAZATION OF ALLOY CARBIDES IN TEMPERING MARTENITE   I. Nucleation
LIU Qingdong1; 2); LIU Wenqing1); WANG Zemin1) ; ZHOU Bangxin1)
1) Instrumental Analysis & Research Center; Shanghai University; Shanghai 200444
2) Institute of Research of Iron and Steel; Jiangsu Province and Sha-Steel; Suzhou 215625
引用本文:

刘庆冬 刘文庆 王泽民 周邦新. 回火马氏体中合金碳化物的3D原子探针表征 I. 形核[J]. 金属学报, 2009, 45(11): 1281-1287.
, , , . 3D ATOM PROBE CHARACTERAZATION OF ALLOY CARBIDES IN TEMPERING MARTENITE   I. Nucleation[J]. Acta Metall Sin, 2009, 45(11): 1281-1287.

全文: PDF(1560 KB)  
摘要: 

Nb-V微合金钢在1200 ℃固溶0.5 h后淬火, 在450 ℃回火不同时间, 用三维原子探
针(3DAP)研究了回火过程中合金碳化物的形核规律. 结果显示, 淬火态Nb-V微合金钢在
450 ℃回火时合金碳化物处于形核阶段, 合金元素可通过动态再分配, 实现渗碳体到合金
碳化物的原位转变, 或者在位错等缺陷处直接与C结合, 完成合金碳化物的单独成核长大, 或者
偏聚在残余奥氏体/基体和未溶的AlN粒子/基体界面处, 实现合金碳化物的异质形核长大.

关键词 三维原子探针(3DAP)回火马氏体合金碳化物形核    
Abstract

During tempering of martensite a complex carbide precipitation sequence appeared in the steel particularly containing microalloyed elements such as V, Nb and Ti. The alloy carbide, which usually precipitates following cementite precipitation in certain temperature range, has been designed to maximize the number density and to retard the coarsening for increasing soften resistance. During the nucleation stage of the alloy carbide, the dislocations and interfaces of distinct phases are the actively precipitated position. However, because of extremely small sizes, their characterization is restricted by the analytic resolution of conventional methods. The 3D atom probe (3DAP) is a particularly helpful instrument with atomic spatial resolution and high componential sensitivity in the characterization of the early stages of precipitation reactions. In this paper, the 3DAP companied with TEM and micro-hardness test was applied to characterize the early nucleation stage of the alloy carbides precipitated during tempering of Nb-V microalloyed steel after quenched from solution treatment at 1200 ℃ for 0.5 h. With the tempering time prolonged from 0.5 to 100 h at 450 ℃, the micro-hardness of the experimental steel changes with the microstructure recovery and carbide evolution (from cementite to alloy carbide). The two peak hardness values appeared at 4 and 100 h tempering are related to precipitate cementite and alloy carbide, respectively. The nucleation of the alloy carbides happens during 30 h tempering at 450 ℃. The alloyed elements dynamically redistributed in the existed remnant austenite, that is, non-carbide-forming elements such as Si and Al diffuse to matrix from the cementite, whereas the carbide-forming elements such as Mo, Nb and V enriched in the cementite, resulting in in situ transformation of alloy carbides. The intragranular defects such as high density dislocation in martensite also act as nucleation sites of alloy carbide, at which V and Nb directly combine with C and lead to the formation of G.P. zone before formation of alloy carbides. Besides, the interfaces of the remnant austenite/matrix and the undissolved AlN/matrix are also energetically favorable nucleation sites, resulting in heterogeneous nucleation of alloy carbides. With the decrease of dislocation density and the dissolutions of cementite and remnant austenite, the consumption of the potential nucleation sites ends the nucleation stage of alloy carbide when tempering for 100 h.

Key words3D atom probe (3DAP)    tempering martensite    alloy carbide    nucleation
收稿日期: 2009-04-29     
ZTFLH: 

TG113.25

 
基金资助:

国家自然科学基金重点项目50931003, 上海市重点学科建设项目S30107和上海市科委科技基金项目09520500100资助

作者简介: 刘庆冬, 男, 1982年生, 助理研究员, 硕士

[1] Speich G R. Trans TMS–AIME, 1969; 245: 2553
[2] Miyamoto G, Oh J C, Hono K, Furuhara T, Maki T. Acta Mater, 2007; 55: 5027
[3] Liu Q D, Liu W Q, Wang Z M, Zhou B X. Acta Metall Sin, 2008; 44: 786
(刘庆冬, 刘文庆, 王泽民, 周邦新. 金属学报, 2008; 44: 786)

[4] Guo K X. Acta Metall Sin, 1957; 2: 303
(郭可信. 金属学报, 1957; 2: 303)

[5] Zhao L C. Principle of Metal Heat Treatment. Harbin: Harbin Institute of Technology Press, 1987: 200
(赵连城. 金属热处理原理. 哈尔滨: 哈尔滨工业大学出版社, 1987: 200)

[6] Zhao Z Y, Ling B, Zhong P, Zhong BW. Trans Met Heat Treat, 2000; 21: 14
(赵振业, 凌斌, 钟平, 钟炳文. 金属热处理学报, 2000; 21: 14)

[7] Hultgren A, Kuo K. Rev Metall, 1953; 50: 847
[8] Sato T, Nishizawa T. J Jpn Inst Met, 1955; 19: 385
[9] Sato T, Nishizawa T, Honda H. Tetsu Hagan´e, 1955; 41: 1188
(佐藤知雄, 西伬泰二, 本田 裕. 铁と钢,1955; 41: 1188)

[10] Liu Q D, Chu Y L, Wang Z M, Liu W Q, Zhou B X. Acta Metall Sin, 2008; 44: 1281
(刘庆冬,褚于良,王泽民,刘文庆,周邦新. 金属学报,2008441281)

[11] Danoix F, Courtois E, Vurpillot F, Epicier T. Vacuum Nanoelectronics Conference, 2006 and the 2006 50th International Field Emission Symposium, Guilin: IVNC/IFES, 2006: 125
[12] Morrison W B. Ironmaking Steelmaking, 1989; 16: 123
[13] Liu Y C, Fu J, Wu H J. Iron Steel, 2008; 43: 33
(刘阳春, 傅杰, 吴华杰. 钢铁, 2008; 43: 33)

[14] Yong Q L. Secondary Phase in Steel. Beijing: Metallurgical Industry Press, 2006: 280
(雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 280)

[15] Ning H, Zhang L X. Acta Metall Sin, 1990; 26A: 346
(宁华, 张立新. 金属学报, 1990; 26A: 346)
[16] Wang X T. Metal Material Science. Beijing: China Machine Press, 1987: 30
(王笑天. 金属材料学. 北京: 机械工业出版社, 1987: 30)

[1] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[2] 刘续希, 柳文波, 李博岩, 贺新福, 杨朝曦, 恽迪. 辐照条件下Fe-Cu合金中富Cu析出相的临界形核尺寸和最小能量路径的弦方法计算[J]. 金属学报, 2022, 58(7): 943-955.
[3] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[4] 杜娟, 程晓行, 杨天南, 陈龙庆, Mompiou Frédéric, 张文征. 奥氏体析出相激发形核的原位TEM研究[J]. 金属学报, 2019, 55(4): 511-520.
[5] 樊丹丹, 许军锋, 钟亚男, 坚增运. 过热温度和冷却速率对过冷Ti熔体凝固过程的影响[J]. 金属学报, 2018, 54(6): 844-850.
[6] 李淑波, 杜文博, 王旭东, 刘轲, 王朝辉. Zr对Mg-Gd-Er合金晶粒细化机理的影响[J]. 金属学报, 2018, 54(6): 911-917.
[7] 王同敏, 魏晶晶, 王旭东, 姚曼. 合金凝固组织微观模拟研究进展与应用[J]. 金属学报, 2018, 54(2): 193-203.
[8] 王锦程, 郭灿, 张琪, 唐赛, 李俊杰, 王志军. 原子尺度下凝固形核计算模拟研究的进展[J]. 金属学报, 2018, 54(2): 204-216.
[9] 李晓林, 崔阳, 肖宝亮, 张大伟, 金钊, 程政. V-N微合金钢在线快速感应回火工艺中V(C, N)析出强化机制[J]. 金属学报, 2018, 54(10): 1368-1376.
[10] 胡小锋, 姜海昌, 赵明久, 闫德胜, 陆善平, 戎利建. 一种Fe-Cr-Ni-Mo高强高韧合金钢焊接接头的组织和力学性能[J]. 金属学报, 2018, 54(1): 1-10.
[11] 邹宗园, 许小奎, 李银潇, 王超. 大热输入焊接用钢的焊接粗晶热影响区韧性提升方法研究[J]. 金属学报, 2017, 53(8): 957-967.
[12] 杨永,王昭东,李天瑞,贾涛,李小琳,王国栋. 一种第二相析出-温度-时间曲线计算模型的建立[J]. 金属学报, 2017, 53(1): 123-128.
[13] 陈瑞, 许庆彦, 吴勤芳, 郭会廷, 柳百成. Al-7Si-Mg合金凝固过程形核模型建立及枝晶生长过程数值模拟*[J]. 金属学报, 2015, 51(6): 733-744.
[14] 谢尘, 吴晓春, 闵娜, 沈贇靓. 3DAP研究高碳高合金钢深冷处理过程的C偏聚行为[J]. 金属学报, 2015, 51(3): 325-332.
[15] 邸新杰, 邢希学, 王宝森. Inconel 625熔敷金属中δ相的形核与粗化机理*[J]. 金属学报, 2014, 50(3): 323-328.