Please wait a minute...
金属学报  2010, Vol. 46 Issue (9): 1141-1146    DOI: 10.3724/SP.J.1037.2009.00853
  论文 本期目录 | 过刊浏览 |
3DAP研究Super304H耐热不锈钢中富Cu相的析出行为
迟成宇1), 董建新1), 刘文庆2), 谢锡善1)
1) 北京科技大学材料科学与工程学院, 北京 100083
2) 上海大学分析测试中心, 上海 200444
3DAP INVESTIGATION OF PRECIPITATION BEHAVIOR OF Cu-RICH PHASE IN SUPER304H HEAT RESISTANT STEEL
CHI Chengyu1), DONG Jianxin1),  LIU Wenqing2), XIE Xishan1)
1) School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2) Instrumental Analysis & Research Center, Shanghai University, Shanghai 200444
引用本文:

迟成宇 董建新 刘文庆 谢锡善. 3DAP研究Super304H耐热不锈钢中富Cu相的析出行为[J]. 金属学报, 2010, 46(9): 1141-1146.
, , , . 3DAP INVESTIGATION OF PRECIPITATION BEHAVIOR OF Cu-RICH PHASE IN SUPER304H HEAT RESISTANT STEEL[J]. Acta Metall Sin, 2010, 46(9): 1141-1146.

全文: PDF(706 KB)  
摘要: 

利用三维原子探针(3DAP)研究了超超临界电站锅炉过热器/再热器管材Super304H在650℃时效富Cu相的析出行为. 结果表明, 富 Cu相的析出经历了富Cu原子偏聚区的快速形成以及Cu原子不断聚集到富Cu偏聚区中而渐变形成富Cu相. 富Cu相的析出速率极快, 时效仅5 h富Cu相已明显析出. 随时效时间的延长在富Cu相中逐步排斥出其它元素, 使Cu原子成为富Cu相的主要组成元素. 时效500 h富Cu相中Cu原子的浓度已经达到90%, 时效1000 h富Cu相仍然保持纳米级的尺度且均匀分布, 对Super304H耐热不锈钢具有非常好的强化作用.

关键词 耐热不锈钢Super304H富Cu相三维原子探针(3DAP)第二相强化    
Abstract

Super304H austenitic heat resistant steel is based on 18/8 Cr-Ni stainless steel alloyed mainly with 3%Cu and a small amount of Nb combined with N, which is used as superheater/reheater tubes in ultra-super critical (USC) power plants all over the world, due to its good combination of elevated temperature strength with hot corrosion resistance. The excellent high temperature strengths of this steel are mainly contributed by the precipitation strengthening effect of fine Cu-rich phase. Comprehensive study of the characteristic of Cu-rich phase is very important to understand strengthening effect on this steel. However, the Cu-rich phase is very fine< and difficult to be detected at the beginning of precipitation. In this paper, three dimensional atom probe (3DAP) was used to study the early stage of precipitation behavior and the composition change in Cu-rich phase of Super304H aged at 650℃ for different times after solution treatment at high temperature. Cu-rich phase is formed from Cu-rich segregated rigion by the concentration of Cu atoms in it at very beginning stage of aging. Homogeneously distributed Cu-rich phase precipitates with about 1 nm radius are obviously detected after aging at 650℃ for 5 h. With increasing aging time, Cu-rich phase is growing slowly while other elements in the Cu-rich phase decreased obviously. The copper element has almost concentrated to 90\% in the center part of Cu-rich phase after 500 h aging. The homogenous distribution of fine Cu-rich phase in austenitic matrix effects excellent hardening with increasing aging time. The stability of fine Cu-rich phase is one of the most important reasons for keeping good strength of Super304H heat resistant steel at high temperature.

Key wordsheat resistant steel    Super304H    Cu-rich phase    three dimensional atom probe (3DAP)    second phase strengthening
收稿日期: 2009-12-22     
基金资助:

国家自然科学基金重点资助项目50931003

作者简介: 迟成宇, 男, 1982年生, 博士生

[1] Masuyama F. ISIJ Int, 2001; 41: 612
[2] Sawaragi Y, Ogawa K, Kato S, Matori A, Hirano S. Sumitomo Search, 1992; 48: 50
[3] Sourmail T, Bhadeshia H K D H. Metall Mater Trans, 2004; 36A: 23
[4] Mimura M, Ishitsuka H. In: Jaske C E ed., 2007 Proc ASME Pressure Vessels and Piping Conterence–8the International Conference on Creep and Fatigue at Elevated Temperatures–CREEP, New York: ASME, 2008: 197
[5] Viswanathan R, Henry J F, Tanzosh J, Stanko G, Shingledecker J, Vitalis B. J Mater Eng Perform, 2005; 14: 281
[6] Sawaragi Y, Hirano S. In: Jono M, Inone T eds., Proc Int Conf Mech Behav Mater, New York: Pergamon Press Inc, 1991; 4: 589
[7] Iseda A, Okada H, Semba H, Igarashi M. Energ Mater, 2007; 2: 199
[8] Tan S P, Wang Z H, Cheng S C, Liu Z D, Han J C, Fu W T. Mater Sci Eng, 2009; A517: 312
[9] Noguchi Y, Miyahara M, Okada H, Igarashi M. J Soc Mater Sci, 2007; 56: 136
[10] Prabha B, Sundaramoorthy P, Suresh S, Manimozhi S, Ravishankar B. J Mater Eng Perform, 2009; 18: 1294
[11] Igarashi M. CAMP–ISIJ, 2004; 17: 336
[12] Yang Y, Cheng S C, Yang G. Mater for Mech Eng, 2002; 26(10): 23
(杨岩, 程世长, 杨钢. 机械工程材料, 2002; 26(10): 23)
[13] Semba H, Sawaragi Y, Ogawa K, Natori A, Kan T. Materia Jpn, 2002; 41: 120
[14] Hono K. Acta Mater, 1999; 47: 3127
[15] Liu Q D, Chu Y L, Wang Z M, Liu W Q, Zhou B X. Acta Metall Sin, 2008; 44: 1281
(刘庆冬, 褚于良, 王泽民, 刘文庆, 周邦新. 金属学报, 2008; 44: 1281)
[16] Isheim D, Kolli R P, Fine M E, Seidman D N. Scr Mater, 2006; 55: 35

[1] 赵宝军,赵宇宏,孙远洋,杨文奎,侯华. Mn含量对Fe-Cu-Mn合金纳米富Cu析出相影响的相场法研究[J]. 金属学报, 2019, 55(5): 593-600.
[2] 胡国栋, 王培, 李殿中, 李依依. 新型25Cr-20Ni奥氏体耐热不锈钢750 ℃持久实验过程中析出相演变[J]. 金属学报, 2018, 54(11): 1705-1714.
[3] 李晓林, 崔阳, 肖宝亮, 张大伟, 金钊, 程政. V-N微合金钢在线快速感应回火工艺中V(C, N)析出强化机制[J]. 金属学报, 2018, 54(10): 1368-1376.
[4] 史显波, 严伟, 王威, 单以银, 杨柯. 新型含Cu管线钢的抗氢致开裂性能[J]. 金属学报, 2018, 54(10): 1343-1349.
[5] 史显波,徐大可,闫茂成,严伟,单以银,杨柯. 新型含Cu管线钢的微生物腐蚀行为研究[J]. 金属学报, 2017, 53(2): 153-162.
[6] 沈琴,王晓姣,赵安宇,何益锋,方旭磊,马佳荣,刘文庆. Mn对钢中富Cu相和NiAl相复合析出过程的影响*[J]. 金属学报, 2016, 52(5): 513-518.
[7] 尹炎祺,伍翠兰,谢盼,朱恺,田松栗,韩梅,陈江华. 冷轧及退火制备的超细晶粒双相Mn12Ni2MoTi(Al)钢*[J]. 金属学报, 2016, 52(12): 1527-1535.
[8] 吕昭平, 蒋虽合, 何骏阳, 周捷, 宋温丽, 吴渊, 王辉, 刘雄军. 先进金属材料的第二相强化*[J]. 金属学报, 2016, 52(10): 1183-1198.
[9] 谢尘, 吴晓春, 闵娜, 沈贇靓. 3DAP研究高碳高合金钢深冷处理过程的C偏聚行为[J]. 金属学报, 2015, 51(3): 325-332.
[10] 周德强, 刘雄军, 吴渊, 王辉, 吕昭平. 新型奥氏体耐热不锈钢再结晶行为及其对力学性能的影响[J]. 金属学报, 2014, 50(10): 1217-1223.
[11] 向红亮 范金春 刘东 郭培培. 抗菌时效处理对含Cu双相不锈钢组织和性能的影响 I. 富Cu相的微观结构及演变规律[J]. 金属学报, 2012, 48(9): 1081-1088.
[12] 向红亮 范金春 刘东 顾兴. 抗菌时效处理对含Cu双相不锈钢组织和性能的影响 II. 耐蚀及抗菌性能[J]. 金属学报, 2012, 48(9): 1089-1096.
[13] 刘文庆 朱晓勇 钟柳明 王晓姣 刘庆冬. 微合金钢中第二相临界转变尺寸的研究[J]. 金属学报, 2011, 47(8): 1094-1098.
[14] 徐刚 楚大锋 蔡琳玲 周邦新 王伟 彭剑超. RPV模拟钢中纳米富Cu相的析出和结构演化研究[J]. 金属学报, 2011, 47(7): 905-911.
[15] 王华 史文 何燕霖 符仁钰 李麟. Mn和P在超低碳烘烤硬化钢中的分布形态及对其拉伸行为的影响研究[J]. 金属学报, 2011, 47(3): 263-268.