Please wait a minute...
金属学报  2009, Vol. 45 Issue (9): 1106-1110    
  论文 本期目录 | 过刊浏览 |
预变形对低合金高碳钢超塑性变形行为的影响
张寒; 白秉哲; 方鸿生
清华大学材料科学与工程系先进材料教育部重点实验室; 北京 100084
EFFECT OF PRESTRAIN ON THE SUPERPLASTIC DEFORMATION BEHAVIOR OF LOW-ALLOY HIGH-CARBON STEEL
ZHANG Han; BAI Bingzhe; FANG Hongsheng
Key Laboratory for Advanced Materials of Ministry of Education; Department of Materials Science and Engineering; Tsinghua University; Beijing 100084
引用本文:

张寒 白秉哲 方鸿生. 预变形对低合金高碳钢超塑性变形行为的影响[J]. 金属学报, 2009, 45(9): 1106-1110.
, , . EFFECT OF PRESTRAIN ON THE SUPERPLASTIC DEFORMATION BEHAVIOR OF LOW-ALLOY HIGH-CARBON STEEL[J]. Acta Metall Sin, 2009, 45(9): 1106-1110.

全文: PDF(1016 KB)  
摘要: 

在Gleeble 1500D热模拟试验机上进行单轴压缩实验, 研究了低合金高碳钢连续冷却至珠光体转变孕育期变形时的组织演变过程, 并探讨了所得组织的超塑性. 结果表明: 组织演变过程包括珠光体相变、渗碳体球化和铁素体再结晶3个阶段, 最终形成微米级(约1 μm)铁素体等轴晶粒+亚微米及纳米级渗碳体颗粒的复相组织; 利用速率突变法测得该复相组织在700 ℃, 1×10-4-2×10-4 s-1应变速率下m值(应变速率敏感性指数)可达0.40; 随预变形量增大, 所得组织在700 ℃各应变速率下的流变抗力降低.

关键词 低合金高碳钢球化细化流变抗力超塑性m    
Abstract

There were some reports on superplasticity of ultra-high carbon steels in the last several decades, mainly referring to the superplasticity of fine-equiaxial double-phase microstructure (fine ferrite + cementite particles). However, in order to get the fine--equiaxial double--phase microstructure, very complicated pre-treatment was needed. An exploration to obtain superplastic microstructure through simple uniaxial compression at pearlite transformation incubation temperature was conducted using Gleeble 1500D in this paper. The microstructural evolution processes of the steel during deformation included (1) pearlite transformation, (2) cementite spheroidization and (3) ferrite recrystallization. The (2) and (3) processes start before the finish of pearlite transformation. Two micro-processes of cementite spheroidization were shown in the experiments. One is that the cementite lamellae were dissolved and broken. This process results in the formation of relatively coarse cementite particles (100-200 nm). Another is that finer cementite particles (10-30 nm) reprecipitated in the ferrite during ferrite recrystallization. Deformation during pearlite incubation period can accelerate pearlite transformation and cementite spheroidization. The above processes lead to form fine double-phase microstructure with sub--micrometer and nanometer cementite particles distributed uniformly in fine ferrite (about 1 μm). Samples with the fine double--phase microstructure show the m value of 0.40 in the strain rate range of 1×10-4-2×10-4 s-1 at 700 ℃. The flow stress under different strain rates reduces with the increase of the prestrain. For example, under the strain rate of 1×10-4 s-1 at 700 ℃, the flow stress of the samples with prestrain of 1.2 is only 70 MPa, much lower than 120 MPa of the samples without prestrain. The dispersed cementite particles can prevent ferrite grains from growing during deformation process at high temperature, as a result, the stability of the fine-equiaxial double-phase microstructure is ensured, which is the microstructural condition realizing superplasticity.

Key wordslow-alloy high-carbon steel    spheroidizing    refinement    flow stress    superplasticity    m value
收稿日期: 2009-01-04     
ZTFLH: 

TF777.1

 
基金资助:

国家重点基础研究发展计划资助项目2004CB619105

作者简介: 张寒, 男, 1984年生, 博士生

[1] Howe H M. The Metallurgy of Steel. 2nd ed, New York: Scientific Publishing Company, 1981: 16
[2] Sherby O D. ISIJ Int, 1999; 39: 637
[3] Sherby O D,Walser B, Young C M, Cady E M. Scr Metall, 1975; 9: 569
[4] Sherby O D, Oyama T, Kum D W, Walser B, Wadsworth J. J Met, 1985; 37(6): 50
[5] Oyama T, Sherby O D, Wadsworth J, Walser B. Scr Metall, 1984; 18: 799
[6] Tsuzaki K, Sato E, Furimoto S, Furuhara T, Maki T. Scr Mater, 1999; 40: 675
[7] Sato E, Furimoto S, Furuhara T, Tsuzaki K, Maki T. Mater Sci Forum, 1999; 304–306: 133
[8] Seto K, Kato T, Abe H. Mater Res Soc Symp Proc, 1990; 196: 99
[9] Matsumura Y, Yada H. Trans ISIJ, 1987; 27: 492
[10] Huang Q S, Li L F, Yang W Y, Sun Z Q. Acta Metall Sin, 2007; 43: 724
(黄青松, 李龙飞, 杨王玥, 孙祖庆. 金属学报, 2007; 43: 724)

[11] Hart E W. Acta Metall, 1967; 15: 351
[12] Nieh T G, Wadsworth J, Sherby O D. Superplasticity in Metals and Ceramics. New York: Cambridge University Press, 2005: 189
[13] Hu X H, Houtte P V, Leibeherr M, Walentek A, Seefeldt M, Vandekinderen H. Acta Mater, 2006; 54: 1029
[14] Song R, Ponge D, Raabe D, Kaspar R. Acta Mater, 2005; 53: 845
[15] Shin D H, Kim Y S, Lavernia E J. Acta Mater, 2001; 49: 2387
[16] Ivanisenko Y, Lojkowski W, Valiev R Z, Fecht H J. Acta Mater, 2003; 51: 5555

[1] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[2] 吴国华, 童鑫, 蒋锐, 丁文江. 铸造Mg-RE合金晶粒细化行为研究现状与展望[J]. 金属学报, 2022, 58(4): 385-399.
[3] 刘洁, 徐乐, 史超, 杨少朋, 何肖飞, 王毛球, 时捷. 稀土Ce对非调质钢中硫化物特征及微观组织的影响[J]. 金属学报, 2022, 58(3): 365-374.
[4] 丁宁, 王云峰, 刘轲, 朱训明, 李淑波, 杜文博. 高应变速率多向锻造Mg-8Gd-1Er-0.5Zr合金的微观组织、织构及力学性能[J]. 金属学报, 2021, 57(8): 1000-1008.
[5] 侯玉柏, 于月光, 郭志猛. W-Ni-Fe三元合金等离子球化过程的SPH仿真研究[J]. 金属学报, 2021, 57(2): 247-256.
[6] 王慧远, 夏楠, 布如宇, 王珵, 查敏, 杨治政. 低合金化高性能变形镁合金研究现状及展望[J]. 金属学报, 2021, 57(11): 1429-1437.
[7] 李根, 兰鹏, 张家泉. 基于Ce变质处理的TWIP钢凝固组织细化[J]. 金属学报, 2020, 56(5): 704-714.
[8] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[9] 武华健, 程仁山, 李景仁, 谢东升, 宋锴, 潘虎成, 秦高梧. Al含量对Mg-Sn-Ca合金微观组织与力学性能的影响[J]. 金属学报, 2020, 56(10): 1423-1432.
[10] 张军,介子奇,黄太文,杨文超,刘林,傅恒志. 镍基铸造高温合金等轴晶凝固成形技术的研究和进展[J]. 金属学报, 2019, 55(9): 1145-1159.
[11] 邓丽萍,崔凯旋,汪炳叔,向红亮,李强. AZ31镁合金室温多道次压缩过程微观组织和织构演变的研究[J]. 金属学报, 2019, 55(8): 976-986.
[12] 李淑波, 杜文博, 王旭东, 刘轲, 王朝辉. Zr对Mg-Gd-Er合金晶粒细化机理的影响[J]. 金属学报, 2018, 54(6): 911-917.
[13] 谢广明, 马宗义, 薛鹏, 骆宗安, 王国栋. 工具转速对搅拌摩擦加工Mg-Zn-Y-Zr耐热镁合金超塑性行为的影响[J]. 金属学报, 2018, 54(12): 1745-1755.
[14] 王慧远, 张行, 徐新宇, 查敏, 王珵, 马品奎, 管志平. 超塑性轻合金组织稳定性的研究进展及展望[J]. 金属学报, 2018, 54(11): 1618-1624.
[15] 毛轶哲, 李建国, 封蕾. 573 K高温时效处理的Al-10Mg合金中粗大β(Al3Mg2)相对热压缩组织演化的影响及机理[J]. 金属学报, 2018, 54(10): 1451-1460.