Please wait a minute...
金属学报  2009, Vol. 45 Issue (6): 764-768    
  论文 本期目录 | 过刊浏览 |
Ag和Ta离子双注入改善Ti6Al4V合金耐磨性能
冷崇燕1; 周荣2; 张旭3;卢德宏2; 刘洪喜2
1. 昆明理工大学材料与冶金工程学院; 昆明 650093
2. 昆明理工大学机电工程学院; 昆明  650093
3. 北京师范大学低能核物理研究所; 北京 100875
WEAR PERFORMANCE OF Ti6Al4V ALLOY MODIFIED BY Ag+Ta DUAL--ION IMPLANTATION
LENG Chongyan 1; ZHOU Rong 2; ZHANG Xu 3; LU Dehong 2; LIU Hongxi 2
1. School of Materials and Metallurgical Engineering; Kunming University of Science and Technology; Kunming 650093
2. School of Mechanical and Electrical Engineering; Kunming University of Science and Technology; Kunming 650093
3. Institute of Low Energy Nuclear Physics; Beijing Normal University; Beijing 100875
引用本文:

冷崇燕 周荣 张旭 卢德宏 刘洪喜. Ag和Ta离子双注入改善Ti6Al4V合金耐磨性能[J]. 金属学报, 2009, 45(6): 764-768.
, , , , . WEAR PERFORMANCE OF Ti6Al4V ALLOY MODIFIED BY Ag+Ta DUAL--ION IMPLANTATION[J]. Acta Metall Sin, 2009, 45(6): 764-768.

全文: PDF(669 KB)  
摘要: 

采用Ag和Ta离子双注入对医用Ti6Al4V合金进行表面改性, 即以Ag离子1.0×1017 cm-2 先注入、以Ta离子1.5×1017 cm-2 后注入合金样品表面. 采用纳米力学探针研究离子注入前、后Ti6Al4V样品表面硬度随压入深度的变化, 利用多功能摩擦磨损试验机分析离子注入前、后样品的耐磨性, 利用XRD和XPS研究样品表面的物相组成和元素化合态. 结果表明, 离子注入后样品磨损量降低了77%. 耐磨损性能的明显改善归因于样品硬度增加, 磨损开始阶段保持低摩擦系数的时间较长和离子注入后合金固溶强化.

关键词 Ti6Al4V 离子双注入 固溶强化 表面改性 磨损性能    
Abstract

The wear performance of Ti6Al4V alloy for clinical usage was modified by dual--ion implantation technique. The samples were implanted firstly with silver ions at a dose of 1.0×1017 cm-2, then with tantalum ions at a dose of 1.5×1017 cm-2. Nanoindenter instrument was used to measure the variation of hardness with displacement into surface of sample, and multi--functional tribological tester was used to investigate the wear and tribological property. Phase constitution in the surface layer of Ti6Al4V alloy was characterized by glancing angle X--ray diffraction (GAXRD), the X--ray photoelectron spectroscopy was used to analyze the chemical states of elements in the surface layer of sample. The results show that the worn area of Ag+Ta dual--ion--implanted Ti6Al4V alloy is decreased by 77\% compared with untreated alloy. The improvement of the wear property is related to the increase of hardness, long holding time of low friction coefficient and solid solution strengthening induced by Ag and Ta.

Key wordsTi6Al4V    dual--ion implantation    solid solution strengthening    surface modification    wear performance
收稿日期: 2008-11-07     
ZTFLH: 

TG146.2

 
作者简介: 冷崇燕, 女, 1972年生, 副教授, 博士

[1] Gurappa I. Mater Charact, 2003; 51: 131
[2] Rack H J, Qazi J I. Mater Sci Eng, 2006; C26: 1269
[3] Jia Q W, Sun J Y. Jiangsu Med J, 2002; 28: 619
(贾庆卫, 孙俊英. 江苏医药杂志, 2002; 28: 619)
[4] Wang H Z, Xu W, Dong Q R. Suzhou Univ J Med Sci, 2005; 25: 519
(王洪震, 徐炜, 董启榕. 苏州大学学报 (医学版), 2005; 25: 519)
[5] Shi W, Dong H, Bell T. Mater Sci Eng, 2000; A291: 27
[6] Dong H, Bell T. Wear, 2000; 238: 131
[7] Fu Y Q, Loh N L, Batchelor A W, Liu D X, Zhu X D, He J W, Xu K W. Surf Coat Technol, 1998; 1061: 193
[8] Liu X Y, Chu P K, Ding C X. Mater Sci Eng, 2004; R47–49: 121
[9] Goldberg J R, Gilbert J L. Biomaterials, 2004; 25: 851
[10] Huang P, Han Y, Xu K. Rare Met Mater Eng, 2002; 31: 308
(黄平, 憨勇, 徐可为. 稀有金属材料与工程, 2002; 31: 308)
[11] Li X Y, Fan A L, Tang B, Pan J D, Liu D X, Huang H, Xu Z. Tribology, 2003; 23: 108
(李秀燕, 范爱兰, 唐宾, 潘俊德, 刘道新, 黄 鹤, 徐重. 摩擦学学报, 2003; 23: 108)
[12] Ueda M, Silva M M, Otani C, Reuther H, Yatsuzuka M, Lepienski C M, Berni L A. Surf Coat Technol, 2003; 169–170: 408
[13] Itoh Y, Itoh A, Azuma H, Hioki T. Surf Coat Technol, 1999; 111: 172
[14] Han S, Kim H, Lee Y, Lee J, Kim S G. Surf Coat Technol, 1996; 82: 270
[15] Liu Y Z, Zu X T, Wang L, Qiu S Y. Vacuum, 2008; 83: 444
[16] Cai Y R. Rare Met Lett, 2005; 24(9): 40
(蔡玉荣. 稀有金属快报, 2005; 24(9): 40)
[17] Montali A. Injury, 2006; 37: S81
[18] Ning Y T, Zhao H Z. Silver. Changsha: Zhongnan University Press, 2005: 180
(宁远涛, 赵怀志. 银. 长沙: 中南大学出版社, 2005: 180)
[19] Tang H Q, Liu T, Liu X, Gu H Q, Zhao J. Nucl Instrum Methods, 2007; 255B: 304
[20] Sharkeev Y P, Perry A J, Fortuna S V. Surf Coat Technol, 1998; 108–109: 419

[1] 高晗, 刘力, 周笑宇, 周心怡, 蔡汶君, 周泓伶. Ti6Al4V表面微纳结构的制备及生物活性[J]. 金属学报, 2023, 59(11): 1466-1474.
[2] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[3] 韩林至, 牟娟, 周永康, 朱正旺, 张海峰. 热处理温度对Ti0.5Zr1.5NbTa0.5Sn0.2 高熵合金组织结构与力学性能的影响[J]. 金属学报, 2022, 58(9): 1159-1168.
[4] 崔振铎, 朱家民, 姜辉, 吴水林, 朱胜利. Ti及钛合金表面改性在生物医用领域的研究进展[J]. 金属学报, 2022, 58(7): 837-856.
[5] 王文权, 杜明, 张新戈, 耿铭章. H13钢表面电火花沉积WC-Ni基金属陶瓷涂层微观组织及摩擦磨损性能[J]. 金属学报, 2021, 57(8): 1048-1056.
[6] 孙新军,刘罗锦,梁小凯,许帅,雍岐龙. 高钛耐磨钢中TiC析出行为及其对耐磨粒磨损性能的影响[J]. 金属学报, 2020, 56(4): 661-672.
[7] 张银辉, 冯强. W对新型Nb稳定化奥氏体耐热铸钢1000 ℃蠕变行为的影响[J]. 金属学报, 2017, 53(9): 1025-1037.
[8] 张二林, 王晓燕, 憨勇. 医用多孔Ti及钛合金的国内研究现状[J]. 金属学报, 2017, 53(12): 1555-1567.
[9] 于振涛, 余森, 程军, 麻西群. 新型医用钛合金材料的研发和应用现状[J]. 金属学报, 2017, 53(10): 1238-1264.
[10] 林潇, 葛隽, 吴水林, 刘宝华, 杨惠林, 杨磊. 兼具成骨和抗感染性能的医用金属材料研究进展[J]. 金属学报, 2017, 53(10): 1284-1302.
[11] 赵时璐,张震,张钧,王建明,张正贵. 多弧离子镀TiAlZrCr/(Ti, Al, Zr, Cr)N梯度膜的微观结构与耐磨损性能*[J]. 金属学报, 2016, 52(6): 747-754.
[12] 楼白杨,王宇星. Mo含量对CrMoAlN薄膜微观结构和摩擦磨损性能的影响*[J]. 金属学报, 2016, 52(6): 727-733.
[13] 李维娟, 张恒毅, 付豪, 张建平, 戚翔宇. 低碳钢烘烤硬化机制的内耗研究[J]. 金属学报, 2015, 51(4): 385-392.
[14] 崔文芳,曹栋,秦高梧. 磁控溅射沉积Ti/TiN多层膜的组织特征及耐磨损性能*[J]. 金属学报, 2015, 51(12): 1531-1537.
[15] 罗新民, 王翔, 陈康敏, 鲁金忠, 王兰, 张永康. 激光冲击诱导的航空铝合金表层高熵结构及其抗蚀性[J]. 金属学报, 2015, 51(1): 57-66.