Please wait a minute...
金属学报  2008, Vol. 44 Issue (11): 1340-1347     
  论文 本期目录 | 过刊浏览 |
垂直向上凝固Al-Cu铸件中微观孔洞形成的数值模拟
赵海东;吴朝忠;李元元;大中逸雄
华南理工大学机械与汽车工程学院
Modeling of Microporosity Formation in a Vertical Upward Unidirectional Solidification Al-Cu Casting
Hai-Dong ZHAO;Chao-Zhong WU;Yuan-Yuan LI;Itsuo OHNAKA
华南理工大学机械与汽车工程学院
引用本文:

赵海东; 吴朝忠; 李元元; 大中逸雄 . 垂直向上凝固Al-Cu铸件中微观孔洞形成的数值模拟[J]. 金属学报, 2008, 44(11): 1340-1347 .
, , , . Modeling of Microporosity Formation in a Vertical Upward Unidirectional Solidification Al-Cu Casting[J]. Acta Metall Sin, 2008, 44(11): 1340-1347 .

全文: PDF(1623 KB)  
摘要: 

基于枝晶间流动的Darcy定律, 考虑了凝固过程氢的宏观扩散与传输, 建立了耦合氢宏观偏析的铝合金铸件微观孔洞形成的数学模型, 并进行了实时熔炼的Al-4.5%Cu(质量分数)铸件的垂直向上凝固实验, 铸件微观组织和孔洞的分析结果表明: 铸件沿着高度方向包括了柱状晶、柱状晶向等轴晶转变(CET)和等轴晶3个区域; 柱状晶区域内微观孔洞体积分数存在递减的分布规律, 且邻近底部冷模的试样微观孔洞体积分数最大.采用所建立的模型对实验铸件微观孔洞形成进行了模拟, 模拟结果与实验结果吻合较好; 而当忽略氢宏观偏析时, 模拟结果与实验结果存在较大误差.研究表明, 氢的宏观偏析对微观孔洞的形核与分布具有重要影响.

关键词 微观孔洞数值模拟Al-Cu铸件氢宏观偏析    
Abstract

Based on Darcy’s law for interdendritic flow, the present study developed a mathematical model for hydrogen porosity formation in Al castings, which specially considers the hydrogen macrosegregation including hydrogen diffusion and transport in macroscopic scale. An upward unidirectional solidification experiment of Al-4.5wt%Cu casting with in-situ melting was carried out. The microstructure analysis showed that the casting included columnar, CET (columnar-to-equiaxed transition), and equiaxed regions in upward direction. It was found that there exist a decreasing distribution of porosity in the columnar region and porosity with high content in casting part next to the bottom chill. The proposed model was applied to the experimental casting. The simulation results were in well agreement with the experiment results. It was indicated that the simulation without the hydrogen macrosegregation can’t well predict the microporosity in the casting, and that the hydrogen macrosegregation had significant influence on the predicted porosities, especially their nucleation and distribution.

Key wordsmicroporosity    modelling    Al-Cu casting    Hydrogen macrosegregation
收稿日期: 2008-04-03     
ZTFLH: 

TF777.1

 
[1]Campbell J.Castings.2nd Ed.,Oxford:Elsevier Butterworth-Heinemann,2003:178
[2]Caceres C H,Selling B I.Mater Sci Eng,1996;A220:109
[3]Lee P D,Chirazi A,See D.J Light Metals,2001;1:15
[4]Kubo K,Pehlke R D.Metall Trans,1985;16B:359
[5]Combeau H,Carpentier D,Lacaze J,Lesoult G.Mater Sci Eng,1993;A173:155
[6]Rousset P,Rappaz M,Hannart B.Metall Mater Trans, 1995;26A:2349
[7]Zhu J D,Ohnaka I.In:Rappaz M,Ozgu M R,Mahin K W,eds.,Modelling of Casting,Welding and Advanced Solidification Processing.Part V,TMS,Warrendale,PA, 1990:435
[8]Sabau A S,Viswanathan S.Metall Mater Trans,2002; 33B:2435
[9]Pequet Ch,Gremaud M,Rappaz M.Metall Mater Trans, 2002;33A:2095
[10]Zhu J D,Cockcroft S L,Maijer D M.Metall Mater Trans, 2006;37A:1075
[11]Melo M L N M,Rizzo E M S,Santos R G.Mater Sci Eng, 2004;A374:351
[12]Boeira A P,Ferreira I L,Garcia A.Mater Sci Eng,2006; A435:150
[13]Carlson K D,Lin Z P,Beckermann C,Mazurkevich G, Schneider M C.In:Wang Q,Krane M J M,Lee P D,eds., Simulation of Al Shape Casting Processing:From Alloy Design to Mechanical Properties,TMS,Texas,2006:133
[14]Fox S,Campbell J.Scr Mater,2000;43:881
[15]Lee P D,Hunt J D.Scr Mater,1997;36:399
[16]Lee P D,Hunt J D.Acta Mater,2001;49:1383
[17]Ohnaka I.Solidification Analysis of Castings.New York: Hemisphere Pub.,1991:162
[18]Eichenauer W,Markopoulos J Z.Z Metallkd,1974;65: 649
[19]Patrick M S,John W E,Gilbert F G.Scr Mater,1999; 40:937
[20]Gunduz M,Cadirh E.Mater Sci Eng,2002;A327:167
[21]Bower T F,Brody H D,Flemings M C.Trans TMS- AIME,1966;236:624
[22]Poirier D R.Metall Trans,1987;18B:245
[23]Santosa R G,Melo M L N M.Mater Sci Eng,2005;A351: 151
[24]Carman P C.Trans Inst Chem Eng,1937;14:150
[25]Murakami K,Shiraishi T,Okamoto T.Acta Metall,1983; 31:1417
[26]Murakami K,Shiraishi T,Okamoto T.Acta Metall,1984; 32:1423
[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[5] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[6] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[7] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.
[8] 杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.
[9] 王富强, 刘伟, 王兆文. 铝电解槽中局部阴极电流增大对电解质-铝液两相流场的影响[J]. 金属学报, 2020, 56(7): 1047-1056.
[10] 刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759.
[11] 王波,沈诗怡,阮琰炜,程淑勇,彭望君,张捷宇. 冶金过程中的气液两相流模拟[J]. 金属学报, 2020, 56(4): 619-632.
[12] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[13] 戴培元,胡兴,逯世杰,王义峰,邓德安. 尺寸因素对2D轴对称模型计算不锈钢管焊接残余应力精度的影响[J]. 金属学报, 2019, 55(8): 1058-1066.
[14] 张清东, 林潇, 刘吉阳, 胡树山. Q&P钢热处理过程有限元法数值模拟模型研究[J]. 金属学报, 2019, 55(12): 1569-1580.
[15] 逯世杰, 王虎, 戴培元, 邓德安. 蠕变对焊后热处理残余应力预测精度和计算效率的影响[J]. 金属学报, 2019, 55(12): 1581-1592.