Please wait a minute...
金属学报  2008, Vol. 44 Issue (11): 1299-1304     
  论文 本期目录 | 过刊浏览 |
基于动态相变的热轧TRIP 钢组织及性能研究
尹云洋;杨王玥;李龙飞;孙祖庆;王西涛
北京科技大学材料科学与工程学院
STUDY ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF HOT ROLLIED C-Mn-Si-(Al) TRIP STEELS BASED ON DYNAMIC TRANSFORMATION OF UNDERCOOLED AUSTENITE
;;LI Longfei;;
北京科技大学
引用本文:

尹云洋; 杨王玥; 李龙飞; 孙祖庆; 王西涛 . 基于动态相变的热轧TRIP 钢组织及性能研究[J]. 金属学报, 2008, 44(11): 1299-1304 .
, , , , . STUDY ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF HOT ROLLIED C-Mn-Si-(Al) TRIP STEELS BASED ON DYNAMIC TRANSFORMATION OF UNDERCOOLED AUSTENITE[J]. Acta Metall Sin, 2008, 44(11): 1299-1304 .

全文: PDF(3126 KB)  
摘要: 通过热模拟压缩实验,开展了基于动态相变的热轧C-Mn-Si及C-Mn-Al-Si 系 TRIP钢组织及性能特征的研究. 结果表明, 通过动态相变, 可以使TRIP钢复相组织由细小铁素体晶粒、尺寸细小及位向混乱的贝氏体束、弥散分布的体积分数较高的颗粒状残余奥氏体等组成.由于铁素体、贝氏铁素体间的大量晶界、贝氏铁素体内的高位错密度以及铁素体晶粒间大量的细小颗粒状残余奥氏体,使实验钢具有连续屈服、屈强比低、强度较高及 塑性良好的特点. 其中, C-Mn-Si 钢的抗拉强度为890 MPa, 延伸率为26%; C-Mn-Al-Si 钢的强度为760 MPa, 延伸率为32%.
关键词 热轧TRIP钢过冷奥氏体动态相变铁素体    
Abstract:Abstract: The microstructure and mechanical properties of hot rolled C-Mn-Si and C-Mn-Al-Si TRIP(transformation induced plasticity) steels based on dynamic transformation of undercooled austenite (DTUA) were investigated by uniaxial hot compression tests on a Gleeble1500 simulation test machine. The results showed that in the multiphase microstructure of investigated steels, the grain size of ferrite was fine, the bainite packets was small and had chaotic orientations, the retained austenite distributed uniformly and had high volume fraction duo to the DTUA. Moreover in the microstructure, lots of grain boundaries of ferrite and bainitic ferrite, high density of desolation in bainitic ferrite and a high amount of granular retained austenite located among/between ferrites resulted in the steels having excellent mechanical properties, which was characterized by a combination of continuous yielding, high strength (~890MPa for C-Mn-Si steel and 760MPa for C-Mn-Al-Si steel) and high elongation(26% and 32% respectively )as well as low yield ratio.
Key wordshot rolled TRIP steel    dynamic transformation of undercooled austenite    ferrite    bainite    retained auste
收稿日期: 2008-06-17     
ZTFLH:  TF777.1  
[1]Yin Y Y,Yang W Y,Li L F,Sun Z Q,Wang X T.Acta Metall Sin,2008;44:686 (尹云洋,杨王玥,李龙飞,孙祖庆,王西涛.金属学报,2008;44,686)
[2]Li J C,Yin Y Y,Li L F,Yang W Y,Sun Z Q.J Iron Steel Res,accepted (李建成,尹云洋,李龙飞,杨王明,孙祖庆.钢铁研究学报,待发表)
[3]Yin Y Y,Yang W Y,Li L F,Sun Z Q,Wang X T.Acta Metall Sin,2008;44:1292 (尹云洋,杨王明,李龙飞,孙祖庆,王西涛.金属学报,2008;44:1292)
[4]Hanzaki A Z,Hodgson P D,Yue S.ISIJ Int,1995;35:324
[5]Koh H J,Lee S K,Park S H,Choi S J,Kwon S J,Kim N J.Scr Mater,1998;38:763
[6]Sun Z Q,Yang W Y,Qi J J,Hu A M.Mater Sci Eng, 2002;A334:201
[7]Sachdev A K.Acta Metall,1983;31:2037
[8]Tosal-Martinez L,Vanderschueren D,Jacobs S,Van- deputte S.Steel Res,2001;72:412
[9]Timokhina I B,Hodgson P D,Pereloma E V.Metall Mater Trans,2003;34A:1599
[10]Yang W Y,Qi J J,Sun Z Q,Yang P.Acta Metall Sin, 2004;40:135 (杨王明,齐俊杰,孙祖庆,杨平.金属学报,2004;40:135)
[11]Evans P J,Grawford L K,Jones A.Ironmaking Steelmak- ing,1997;24:361
[12]Koh-Ichi S,Jyunya S,Tsutomu I,Takahiro K.ISIJ Int, 2000;40:920
[13]Traint S,Pichler A,Hauzenberger K,Stiaszny P,Werner E.Steel Res,2002;73:259
[14]Shunichi H,Shushi I,Koh-Ichi S,Syugo M.ISIJ Int,2004; 44:1590
[15]Hanzaki A Z,Hodgson P D,Yue S.Metall Mater Trans, 1997;28A:2405
[16]Langford F,Cohen M.Trans ASM,1969;62:623
[17]Pereloma E V,Timokhina I B,Miller M K,Hodgson P D. Acta Mater,2007;55:2587
[18]Timokhina I B,Hodgson P D,Pereloma E V.Metall Mater Trans,2004;35A:2331
[19]Tomota Y,Tokuda H,Adachi Y,Wakita M,Minakawa N, Moriai A,Morii Y.Acta Mater,2004;52:5737
[20]Jacques P J,Petein A,Harlet P.In:de Cooman B C,ed., Int conf on TRIP-Aided High Strength Ferrous Alloys. Aachen:Wissenschafts Verlag Mainz Gmbh,2001:281
[21]Goel N C,Sangal S,Tangri K.Metall Trans,1985;16A: 2013
[1] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[2] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[3] 程远遥, 赵刚, 许德明, 毛新平, 李光强. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响[J]. 金属学报, 2023, 59(3): 413-423.
[4] 侯旭儒, 赵琳, 任淑彬, 彭云, 马成勇, 田志凌. 热输入对电弧增材制造船用高强钢组织与力学性能的影响[J]. 金属学报, 2023, 59(10): 1311-1323.
[5] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[6] 化雨, 陈建国, 余黎明, 司永宏, 刘晨曦, 李会军, 刘永长. Cr铁素体耐热钢与奥氏体耐热钢的异种材料扩散连接接头组织演变及力学性能[J]. 金属学报, 2022, 58(2): 141-154.
[7] 朱彬, 杨兰, 刘勇, 张宜生. 基于纳米压痕逆算法的热冲压马氏体/贝氏体双相组织的微观力学性能[J]. 金属学报, 2022, 58(2): 155-164.
[8] 朱东明, 何江里, 史根豪, 王青峰. 热输入对Q500qE钢模拟CGHAZ微观组织和冲击韧性的影响[J]. 金属学报, 2022, 58(12): 1581-1588.
[9] 彭俊, 金鑫焱, 钟勇, 王利. 基板表层组织对Fe-16Mn-0.7C-1.5Al TWIP钢可镀性的影响[J]. 金属学报, 2022, 58(12): 1600-1610.
[10] 陈胜虎, 戎利建. 超细晶铁素体-马氏体钢的高温氧化成膜特性及其对Pb-Bi腐蚀行为的影响[J]. 金属学报, 2021, 57(8): 989-999.
[11] 蒋中华, 杜军毅, 王培, 郑建能, 李殿中, 李依依. M-A岛高温回火转变产物对核电SA508-3钢冲击韧性影响机制[J]. 金属学报, 2021, 57(7): 891-902.
[12] 刘曼, 胡海江, 田俊羽, 徐光. 变形对超高强贝氏体钢组织和力学性能的影响[J]. 金属学报, 2021, 57(6): 749-756.
[13] 刘晨曦, 毛春亮, 崔雷, 周晓胜, 余黎明, 刘永长. 低活化铁素体/马氏体钢组织调控及其固相连接研究进展[J]. 金属学报, 2021, 57(11): 1521-1538.
[14] 赵嫚嫚, 秦森, 冯捷, 代永娟, 国栋. AlNi1Cr9Al(1~3)Ni(1~7)WVNbB钢热变形行为的影响[J]. 金属学报, 2020, 56(7): 960-968.
[15] 彭云,宋亮,赵琳,马成勇,赵海燕,田志凌. 先进钢铁材料焊接性研究进展[J]. 金属学报, 2020, 56(4): 601-618.