Please wait a minute...
金属学报  2008, Vol. 44 Issue (2): 139-144     
  论文 本期目录 | 过刊浏览 |
Ni47Ti44Nb9形状记忆合金冷轧管材的组织、织构和相变
颜莹;金伟;曹名洲
东北大学
Study of microstructure and texture of as-cold-rolled Ni47Ti44Nb9 shape memory alloy tube
东北大学
引用本文:

颜莹; 金伟; 曹名洲 . Ni47Ti44Nb9形状记忆合金冷轧管材的组织、织构和相变[J]. 金属学报, 2008, 44(2): 139-144 .

全文: PDF(628 KB)  
摘要: 利用光学显微镜、DSC差热分析仪和X-射线衍射仪,研究了Ni47Ti44Nb9合金锻棒、热挤压管和不同条件下冷轧管材的组织、织构和相转变,以便为该合金冷轧管材在工程上的应用提供理论依据。结果表明:锻棒中的B2相呈较宽的纤维状,主要的织构组分接近{112}〈111〉和{110}〈111〉;热挤压管纤维组织变细且发生碎化,多数晶粒的{111}取向接近管材的轴向;冷轧管相组成为B2、 β-Nb和(Ti,Nb)4Ni2O,纤维组织发生严重碎化,抑制了马氏体相变的进行, {111}〈110〉和{112}〈110〉成为主要的织构组分。随热处理温度升高,冷轧管硬度下降,相转变温度区间变窄,转变峰升高,主要织构{111}〈110〉和{112}〈110〉显著增强。当温度达到850℃,再结晶晶粒明显长大,热滞和硬度显著下降,织构组分偏离{111}〈110〉和{112}〈110〉,这对于希望在管材的径向方向 具有高的力学性能和恢复应变是不利的。
关键词 形状记忆合金织构组织相转变Ni47Ti44Nb    
Abstract:The microstructure, texture and phase transformation of forged bar, hot-extruded tube and cold-rolled tubes at different conditions of Ni47Ti44Nb9 alloy were investigated in terms by optical microscope,DSC and X-ray technique,in order to provide theoretical data for application of cold-rolled tubes in engineering. The results show that B2 phase presents broad fibred shape in the forged rod, and major textures are close to {112}〈111〉and {110}〈111〉; Fibred microstructure in hot-extruded tube becomes fine and fibres have broken, at the same time, {111} orientation of many grains is close to axis direction of tube; Microstructure in cold-rolled tube consists of B2,β -Nb and (Ti,Nb)4Ni2O phases, fibres has heavily broken, which restrains phase transformation during cooling and heating. And {111}<110〉and {112}〈110〉become the major texture components; As the result of the increase of heat treatment temperature, hardness decreases, temperature interval of phase transformation becomes narrow, transformation peak rises, the primary {111}〈110〉and {112}〈110〉textures markedly enhance. Recrystallization grains have grown at 850℃, thermal hysteresis and hardness obviously drop. The primary texture components depart from {111}〈110〉and {112}〈110〉.These are disadvantageous to expect to obtain greater mechanical properties and restoration strain along radial direction of tube.
Key wordsShape memory alloy    texture    microstructure    phase transformation    Ni47Ti44Nb9 alloy tube
收稿日期: 2007-05-28     
[1]Shu Y C,Bhattacharya K.Acta Mater,1998;46:5457
[2]Miyazaki S,Otsuka K,Wayman C M.Acta Metall,1989; 37:1873
[3]Paula A S,Canejo J H P,Mahesh K K,Silva R J C,Braz Fernandes F M,Martins R M S,Fernandes F M B,Car- doso A M A,Schell N.Nucl Instrum Method Phys Res, 2006;246B:206
[4]Paula A S,Canejo J H P G,Schell N,Braz Fernandes F M.Nucl Instrum Method Phys Res,2005;238B:111
[5]Knowles K M.Philos Mag,1982;45A:357
[6]Thamburaja P,Anand L.J Mech Phys Solid,2001;49: 709
[7]Yamauchi K,Nishida M,Itai I,Kitamura K,Chiba A. Mater Trans JIM,1996;37:210
[8]Inoue H,Miwa N,Inakazu N.Acta Mater,1996;44:4825
[9]Mulder J H,Thoma P E,Beyer J.Z Metallkd,1993;84: 501
[10]Li D Y,Wu X F,Ko T.Acta Metall Mater,1990;38:19
[11]Liu Y,Xie Z L,Von Humbeeck J,Delaey L.Acta Mater, 1999;47:645
[12]Miyazaki S,No V H,Kitamura K,Khantachawana A, Hosoda H.Int J Plast,2000;16:1135
[13]Ishida,A,Takei A,Miyazaki S.Thin Solid Film,1993; 228:210
[14]Hou L,Grummon D S.Scr Metall Mater,1995;33:989
[15]Yang G J,Xie L Y,Hu W Y,Deng J,Hao S M.Rare Met Mater Eng,1994;23(3):13 (杨冠军,谢丽英,胡文英,邓炬,郝士明.稀有金属材料与工程,1994;23(3):13)
[16]Jin W,Cao M Z,Yang R,Hu Z Q.J Mater Sci Technol, 2002;18:538
[17]Piao M,Miyazaki S,Otsuka K.Mater Trans JIM,1992; 33:346
[18]Li Z H,Xiang G Q,Cheng X H.Mater Design,2006;27: 324
[19]Chang S H,Wu S K,Chang G H.Scr Mater,2005;52: 1341
[20]Li C.Metallurgical Theory.Harbin:Harbin Industry Uni- versity Press,1988;260 (李超.金属学原理.哈尔滨工业大学出版社,1988;260)
[21]Toth L S,Jonas J J,Daniel D,Ray R K.Metall Trans, 1990;21A:2985
[22]Raphanel J L,Von Houtte P.Acta Metall,1985;33:1481
[23]Von Schlippenbach U,Emren F,Lucke K.Acta Metall, 1986;34:1289
[24]Zhao H,Rama S C,Barber G C,Wang Z,Wang X.J Mater Process Technol,2002;128:73
[25]Inagaki H.Trans Jpn Inst Met,1987;28:251
[26]Urabe T,Jonas J J.ISIJ Int,1994;34:435
[27]Wang Z D,Guo Y H,Wang G D,Sun D Q,Xue W Y, Liu X H.Chin J Mater Res,2006;20:399 (王昭东,郭艳辉,王国栋,孙大庆,薛文颖,刘相华.材料研究学报,2006;20:399)
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[9] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[10] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[11] 郭福, 杜逸晖, 籍晓亮, 王乙舒. 微电子互连用锡基合金及复合钎料热-机械可靠性研究进展[J]. 金属学报, 2023, 59(6): 744-756.
[12] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[13] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[14] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[15] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.