Please wait a minute...
金属学报  2007, Vol. 43 Issue (10): 1113-1120     
  论文 本期目录 | 过刊浏览 |
镍基高温合金多叶片定向凝固过程数值模拟
于靖;许庆彦;李嘉荣;袁海龙;刘世忠;柳百成
清华大学机械工程系;先进成形制造教育部重点实验室; 北京100084
清华大学机械工程系
引用本文:

于靖; 许庆彦; 李嘉荣; 袁海龙; 刘世忠; 柳百成 . 镍基高温合金多叶片定向凝固过程数值模拟[J]. 金属学报, 2007, 43(10): 1113-1120 .

全文: PDF(673 KB)  
摘要: 真空炉中多叶片条件下的高温合金叶片熔模铸造Bridgman定向凝固过程中存在复杂的辐射换热过程。为了在保证叶片质量避免缺陷的同时提高生产率,有必要研究多叶片在不同拉速情况下的凝固过程温度分布情况。本文建立了基于Monte Carlo法的射线追踪模型,并用来动态处理定向凝固抽拉过程中多叶片间以及叶片与加热炉间的辐射换热过程。模型中考虑了抽拉速度、加热炉几何尺寸等影响,并研究了2种抽拉速度情况下的温度分布情况。本文得到的温度采样点冷却曲线与实际冷却曲线进行了对比并得到了较好的结果。
关键词 定向凝固多叶片加热炉几何尺寸    
Abstract:Complex heat radiation transfer exists in the directional solidification process of multiple turbine blades of superalloy investment casting in vacuum Bridgman furnace. In order to control the quality of casting products, avoid the casting defects and increase the productivity at the same time, it is necessary to investigate the temperature distribution of multiple turbine blades during the directional solidification process. In this paper, a ray tracing model was developed based on Monte Carlo method and used to deal with the complex heat radiation transfer among the multiple turbine blades and the furnace wall during the withdrawal process dynamically. The withdrawal rate and furnace geometry were considered in this model, and the temperature distributions during directional solidification process at two different withdrawal rates were investigated. The simulated cooling curves of special sample positions were compared with the experimental ones and agreed well.
Key wordsDirectional solidification    multiple blades    furnace geometry    investment casting    superalloy    numerical
收稿日期: 2007-02-12     
ZTFLH:  TG292  
[1]Jasinski T,Rohsenow W M,Witt A F,Naumann R J.J Cryst Growth,1984;66:469
[2]Jasinski T,Rohsenow W M,Witt A F.J Cryst Growth, 1983;61:339
[3]Overfelt R A,Wilcox R C.J Cryst Growth,1995;147: 403
[4]Wilcox W R.J Cryst Growth,1980;48:416
[5]Yu K O,Beffel M J,Robinson M,Goettsch D D,Thomas B G,Pinella D,Carlson R G.Trans Am Foundrymens Sac,1990;53:417
[6]Yu K O,Oti J A,Robinson M,Carlson R G.Superalloys 1992.Warrendale,PA:TMS,1992:135
[7]Saitou M,Hirata A.J Cryst Growth,I991;113:147
[8]Ouyang H,Shyy W.Int J Heat Mass Transfer,1996;39: 2039
[9]Ouyang H,Shyy W.Int J Heat Mass Transfer,1997;40: 2293
[10]Galantucci L M,Tricarico L.J Mater Process Technol, 1998;77:160
[11]Wang D,Overfelt R A.In:Cross M,Evans J W eds., Proc Conf Comput Model Mater,Min and Met Process, San Diego,Wanrrendale,Pennsylvania:TMS,2001:461
[12]Zhu J D,Ohnaka I,Kudo K,Obara S,Kimatsuka A,Wang T M,Kinoshita F,Murakami T.In:Stefanescu D M ed., Proc 10th Int Symp Model Cast Weld Adv Solidification Process,Wanrrendale,Pennsylvania:TMS,2003:447
[13]Li J R,Liu S Z,Zhong Z G.J Mater Sci Technol,2002; 18:315
[14]Li J R,Liu S Z,Yuan H L,Zhong Z G.J Mater Sci Tech- nol,2003;19:532
[15]Liang Z J,Li J R,Liu B C,Xu Q Y,Yuan H L,Liu S Z. Multiph Phenom Model Simul Mater Process,Charlotte: TMS,2004:227
[16]Jiang W H.Heat Transfer.Beijing:Higher Education Press,1989:172 (姜为珩.传热学.北京:高等教育出版社,1989:172)
[17]Siegel R,Howell J R.Thermal Radiation Heat Transfer. 3rd Ed,Washington D C,Hemisphere:Hemaisphere and McGraw-Hill,1992.
[1] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[4] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[5] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[6] 张小丽, 冯丽, 杨彦红, 周亦胄, 刘贵群. 二次枝晶取向对镍基高温合金晶粒竞争生长行为的影响[J]. 金属学报, 2020, 56(7): 969-978.
[7] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[8] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[9] 唐文书,肖俊峰,李永君,张炯,高斯峰,南晴. 再热恢复处理对蠕变损伤定向凝固高温合金γ′相的影响[J]. 金属学报, 2019, 55(5): 601-610.
[10] 方辉,薛桦,汤倩玉,张庆宇,潘诗琰,朱鸣芳. 定向凝固糊状区枝晶粗化和二次臂迁移的实验和模拟[J]. 金属学报, 2019, 55(5): 664-672.
[11] 杨燕, 杨光昱, 罗时峰, 肖磊, 介万奇. Mg-14.61Gd合金的定向凝固组织及生长取向[J]. 金属学报, 2019, 55(2): 202-212.
[12] 金浩, 贾清, 刘荣华, 线全刚, 崔玉友, 徐东生, 杨锐. 籽晶制备及Ti-47Al合金PST晶体取向控制[J]. 金属学报, 2019, 55(12): 1519-1526.
[13] 吴国华, 陈玉狮, 丁文江. 高性能镁合金凝固组织控制研究现状与展望[J]. 金属学报, 2018, 54(5): 637-646.
[14] 王锦程, 郭春文, 李俊杰, 王志军. 定向凝固晶粒竞争生长的研究进展[J]. 金属学报, 2018, 54(5): 657-668.
[15] 陈光, 郑功, 祁志祥, 张锦鹏, 李沛, 成家林, 张中武. 受控凝固及其应用研究进展[J]. 金属学报, 2018, 54(5): 669-681.