Please wait a minute...
金属学报  2007, Vol. 43 Issue (4): 367-373     
  论文 本期目录 | 过刊浏览 |
铸造镁合金的枝晶生长模拟
刘志勇;许庆彦;柳百成
清华大学机械工程系
Modeling of Dendrite Growth for Mg Alloy with Compact Hexagonal Crystal Structure
Zhiyong LIU;;
引用本文:

刘志勇; 许庆彦; 柳百成 . 铸造镁合金的枝晶生长模拟[J]. 金属学报, 2007, 43(4): 367-373 .
, , . Modeling of Dendrite Growth for Mg Alloy with Compact Hexagonal Crystal Structure[J]. Acta Metall Sin, 2007, 43(4): 367-373 .

全文: PDF(778 KB)  
摘要: 根据hcp晶体学结构和优先生长方向, 建立了铸造镁合金晶体生长的物理模型, 提出了一种新的随机性模拟方法——虚拟生长中心计算模型. 模型考虑了枝晶生长动力学、各向异性和二次枝晶臂粗化, 采用枝晶形状函数揭示了一 次枝晶和二次枝晶的生长演化过程. 引入坐标变换技术可更快速准确计算任意晶向枝晶的生长捕获. 耦合了微观溶质场计算, 得到了更准确的枝晶生长形貌和溶质分布情况. 对Mg-Al合金定向凝固和等轴晶生长的模拟验证了本模型的正确性.
关键词 数值模拟hcp晶体枝晶生长镁合金    
Abstract:Magnesium alloy is getting more and more worldwide application. Therefore, microstructure simulation of Mg alloy during solidification process not only has important academic value, but also can meet the active demand for development of industry. Based on the crystallographic structure and preferential growth direction of Mg alloy, physical model of grain growth for compact hexagonal structure was founded and a new stochastic simulation method named virtual core growth calculation model was proposed in this paper. Considering dendrite growth kinetics, anisotropy of grain growth and secondary dendrite arm coarsening, the present model adopted dendrite shape functions to reveal the evolution of primary and secondary dendrite arms. A coordinate transformation technique was introduced to calculate the cell capture of growing dendrites with arbitrary orientations rapidly and accurately. Coupled with the calculation of microscopic solute concentration, the simulation can get more accurate growth morphology of dendrites and solute distribution. Finally, applications to the Mg-Al based alloys are presented describing directional as well as equiaxed dendritic growth, which indicated the high theoretic and practical value of proposed models.
Key wordsModeling    Magnesium alloy    Dendrite growth    Compact hexagonal
收稿日期: 2006-08-23     
ZTFLH:  TG244  
[1]Wu S S,Li D N,Mao Y W.Foundry,2002;51:583 (吴树森,李东南,毛有武.铸造,2002;51:583)
[2]Beltran-Sanchez L,Stefanescu D M.Metall Mater Trans, 2004;35A:2471
[3]Zhu M F,Dai T,Li C Y,Hong C P.Sci Chin,2005;35E: 673 (朱鸣芳,戴挺,李成允,洪俊杓.中国科学,2005;35E: 673)
[4]Eiken J,Bottger B,Steinbach I.In:Gandin C A,Bel- let M,eds.,Modeling of Casting,Welding and Advanced Solidification Processes-Ⅺ,Warrendale:TMS,2006:489
[5]Liu Z Y,Xu Q Y,Liu B C.Mater Sci Forum,in press
[6]Dahle A K,Lee Y C,Nave M D,Schaffer P L,StJohn D H.J Light Met,2001;1:61
[7]Steinbach I,Beckermann C,Kauerauf B,Li Q,Guo J. Acta Mater,1999;47:971
[8]Li Q,Beckermann C.Phys Rev,1998;57E:3176
[9]Xu Q Y,Feng W M,Liu B C.J Mater Sci Technol,2003; ??19:391
[10]Kattamis T Z,Coughlin J C,Flemings M C.Trans Met Soc AIME,1967;239:1504
[11]Chang G W,Wang J Z.Crystal Growth and Control in the Solidification of Metal.Beijing:Metallurgical Indus- try Press,2002:109 (常国威,王建中.金属凝固过程中的晶体生长与控制.北京:冶金工业出版社,2002:109)
[12]Thévoz P,Desbiolles J L,Rappaz M.Metall Trans,1989; 20A:311
[13]Kurz W,Giovanola B,Trivedi R.Acta Metall,1986;34: 823
[14]Xu Q Y,Feng W M,Liu B C.Acta Metall Sin,2002;38: 799 (许庆彦,冯伟明,柳百成.金属学报,2002;38:799)
[15]Goldstein H.Classical Mechanics.Reading Mass,USA: Addison-Wesley Pub.Co.Inc.,1959:107
[16]Zare R N.Angular Momentum.New York:John Wiley & Sons,1988:100
[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[4] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[5] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[6] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[7] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[8] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[9] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[10] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[11] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[12] 陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.
[13] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[14] 罗旋, 韩芳, 黄天林, 吴桂林, 黄晓旭. 层状异构Mg-3Gd合金的微观组织和力学性能[J]. 金属学报, 2022, 58(11): 1489-1496.
[15] 李少杰, 金剑锋, 宋宇豪, 王明涛, 唐帅, 宗亚平, 秦高梧. “工艺-组织-性能”模拟研究Mg-Gd-Y合金混晶组织[J]. 金属学报, 2022, 58(1): 114-128.