Please wait a minute...
金属学报  2008, Vol. 44 Issue (8): 979-985     
  论文 本期目录 | 过刊浏览 |
AZ91镁合金表面铈基稀土转化膜的制备及腐蚀电化学行为
钟丽应;曹发和;施彦彦;文强;张昭;张鉴清
浙江大学化学系电化学与功能材料研究所
Preparation and Corrosion resistance of Cerium-based Chemical Conversion Coating on AZ91 Magnesium alloy
Cao Fa-he
引用本文:

钟丽应; 曹发和; 施彦彦; 文强; 张昭; 张鉴清 . AZ91镁合金表面铈基稀土转化膜的制备及腐蚀电化学行为[J]. 金属学报, 2008, 44(8): 979-985 .
, , , , , . Preparation and Corrosion resistance of Cerium-based Chemical Conversion Coating on AZ91 Magnesium alloy[J]. Acta Metall Sin, 2008, 44(8): 979-985 .

全文: PDF(2429 KB)  
摘要: 采用Ce(NO3)3为主盐的稀土盐处理溶液,在AZ91镁合金表面形成无毒,无污染的铈盐化学转化膜,并研究成膜规律及其耐蚀行为。利用对膜层的外加扰动小,更易得到重复性高结果的电化学阻抗谱技术评价膜层耐蚀性能。初步优化了处理时间、温度、Ce(NO3)3液浓度和促进剂等因素对膜层结构和膜层耐蚀性能的影响,并获得了最好的成膜条件:温度35℃,时间为30min,处理液主盐Ce(NO3)3的浓度为0.02mol/l和4ml/l成膜促进剂。结果表明:优化后的工艺能够在AZ91镁合金表面获得宏观黄色致密,微观具有微小裂纹并分层的膜层,内层膜Ce含量较外层的低但致密。工艺优化制备的稀土化学转化膜能有效提高镁合金的耐蚀性能,有效抑制阴阳极反应,自腐蚀电位提高240mV,自腐蚀电流密度降低达到2个数量级。
关键词 AZ91镁合金硝酸铈腐蚀性能    
Abstract:In order to development an environmental friendly surface coating technology for magnesium, a chrome-free Ce-based process to form a conversion coating on AZ91 magnesium alloy was investigated. Electrochemical impedance spectroscopy (EIS) was chosen to evaluate corrosion resistance due to its low effect on electrochemical test system for getting high reproduction result. The effect of treatment time, temperature of electrolyte, concentration of Ce(NO3)3 and accelerant concentration on corrosion resistance was summarized, while a optimized technology was achieved, 0.02mol/l Ce(NO3)3, 4ml/l accelerant at 35℃ for 35 min. The results indicated that the chemical conversion formed in optimized technology presented yellow and impact surface by naked eye, while took on two layer structure with micro cracks on the outer layer. The content of Ce in inner layer was low than that of outer layer, while it was more impact. Tafel plots indicated that conversion film restrained the anodic and cathodic reaction on the interface, while the corrosion potential shifted anodic 240mV and corrosion current density decreased about 100 times.
Key wordsAZ91 magnesium alloy    Cerium    corrosion resistance    conversion coating
收稿日期: 2007-09-21     
ZTFLH:  TG174.4  
[1]Liu S F,Huang S Y,Xu P.Acta Metall Sin,2006;42:443 (刘生发,黄尚宇,徐萍.金属学报,2006;42:443)
[2]Mordike B L,Ebert T.Mater Sci Eng,2001;A302:37
[3]Edward J,Vinari K.Light Metal Age,2001;59(4):74
[4]Zhang H,Yao G C,Liu Y H.Mater Rev,2007;21(3):77 (张华,姚广春,刘宜汉.材料导报,2007,21(3):77)
[5]Jin H L,Han L H.Light Alloy Fabr Technol,2005;33(12): 29 (金华兰,韩丽华.轻合金加工技术,2005;33(12):29)
[6]Sun J C,Zhang D F,Lan W.World Nonferrous Met,2006; (3):18 (孙建春,张丁非,兰伟.世界有色金属,2006;(3):18)
[7]Zhou W Q,Shah D Y,Zeng R C,Han E H,Ke W.Mater Prot,2002;35(7):1 (周婉秋,单大勇,曾荣昌,韩恩厚,柯伟.材料保护,2002;35 (7):1)
[8]Gonzalea-nunez M A,Nunez-lopez C A,Skedon P, Thompson G E,Karimzadeh H,Lyon P,Wilks T E.Cor- ros Sci,1995;37:1763
[9]Lin C S,Lin H C,Linb K M,Lai W C.Corros Sci,2006; 48:93
[10]Manuele D,Katya B,Enrico N,Maurizio M.Surf Coat Technol,2003;172:227
[11]Montemor M F,Simoes A M,Carmezim M J.Appl Surf Sci,2007;253:6922
[12]Katya B,Manuele D,Irene C,Maurizio M.Corros Sci, 2005;47:989
[13]Rudd A L,Breslin C B,Mansfeld F.Corros Sci,2000;42: 275
[14]Xu Y,Chen X,LüZ S,Li Y J.J Chin Rare Earth Soc, 2005;23:40 (许越,陈湘,吕祖舜,李英杰.中国稀土学报,2005;23:40)
[15]Yu X W,Cao C N,Yao Z M,Zhou D R,Yin Z D.Mater Sci Eng,2000;A284:56
[16]Yu P,Hayes S A,O'Keefe T J,O' keefe M J,Stoffer J O. J Electrochem Soc,2006;153 C(1):74
[17]Mishra A K,Balasubramaniam R.Mater Chem Phys, 2007;103:385
[18]Song G L,Andrej A.Adv Eng Mater,1999;1(1):11
[19]Cao F H,Cao J L,Zhang Z,Zhang J Q,Cao C N.Mater Corros,2007;58:696
[20]Zhao M,Wu S S,An P,Luo J R.J Chin Soc Corros Prot, 2007:27:17 (赵明,吴树森,安萍,罗吉荣.中国腐蚀与防护学报,2007;27:17)
[1] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[2] 赵晓峰, 李玲, 张晗, 陆杰. 热障涂层高熵合金粘结层材料研究进展[J]. 金属学报, 2022, 58(4): 503-512.
[3] 陈果, 王新波, 张仁晓, 马成悦, 杨海峰, 周利, 赵运强. 搅拌头转速对2507双相不锈钢搅拌摩擦加工组织及性能的影响[J]. 金属学报, 2021, 57(6): 725-735.
[4] 朱雯婷, 崔君军, 陈振业, 冯阳, 赵阳, 陈礼清. 690 MPa级高强韧低碳微合金建筑结构钢设计及性能[J]. 金属学报, 2021, 57(3): 340-352.
[5] 李吉臣, 冯迪, 夏卫生, 林高用, 张新明, 任敏文. 非等温时效对7B50铝合金组织及性能的影响[J]. 金属学报, 2020, 56(9): 1255-1264.
[6] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[7] 李鑫,董月成,淡振华,常辉,方志刚,郭艳华. 等通道角挤压制备超细晶纯Ti的腐蚀性能研究[J]. 金属学报, 2019, 55(8): 967-975.
[8] 王垚,李春福,林元华. Cr对Fe-Cr合金耐蚀性能影响的电子理论研究[J]. 金属学报, 2017, 53(5): 622-630.
[9] 郑浩然, 陈民芳, 李祯, 由臣, 刘德宝. MgO改性HA对Mg-Zn-Zr/m-HA复合材料组织及性能的影响[J]. 金属学报, 2017, 53(10): 1364-1376.
[10] 徐伟,路新,杜艳霞,孟庆宇,黎鸣,曲选辉. 粉末冶金制备Ti-Fe二元合金的耐腐蚀性能[J]. 金属学报, 2017, 53(1): 38-46.
[11] 王波阳,周邦新,王桢,黄娇,姚美意,周军. Zr-0.72Sn-0.32Fe-0.14Cr-xNb合金在500 ℃过热蒸汽中的耐腐蚀性能*[J]. 金属学报, 2015, 51(12): 1545-1552.
[12] 章晓波, 薛亚军, 王章忠, 贺显聪, 王强. Mg-(4-x)Nd-xGd-Sr-Zn-Zr生物镁合金的组织、力学和腐蚀性能*[J]. 金属学报, 2014, 50(8): 979-988.
[13] 韦天国,龙冲生,苗志,刘云明,栾佰峰. Zr-0.4Fe-1.0Cr-x Mo合金在500℃和10.3 MPa水蒸汽中的腐蚀行为[J]. 金属学报, 2013, 49(6): 717-724.
[14] 喇培清,孟倩,姚亮,周毛熊,魏玉鹏. Al元素对热轧316L不锈钢显微组织和力学性能的影响[J]. 金属学报, 2013, 49(6): 739-744.
[15] 张金龙,谢兴飞,姚美意,周邦新,彭剑超,梁雪. Zr-1Nb-0.7Sn-0.03Fe-xGe合金在360 ℃ LiOH水溶液中耐腐蚀性能的研究[J]. 金属学报, 2013, 29(4): 443-450.