Please wait a minute...
金属学报  2005, Vol. 41 Issue (4): 411-416     
  论文 本期目录 | 过刊浏览 |
Cu--70%Sn包晶合金高温度梯度定向凝固的组织及其尺度
李双明; 马伯乐;吕海燕;刘 林;傅恒志
西北工业大学凝固技术国家重点实验室; 西安 710072
Microstructure And Its Scales Of Cu--70%Sn Peritectic Alloy Under High—Temperature Gradient Directional Solidification
LI Shuangming; MA Baile; LŰ Haiyan; LIU Lin; FU Hengzhi
State Key Laboratory of Solidification Processing; Northwestern Polytechnical University; Xi'an 710072
引用本文:

李双明; 马伯乐; 吕海燕; 刘林; 傅恒志 . Cu--70%Sn包晶合金高温度梯度定向凝固的组织及其尺度[J]. 金属学报, 2005, 41(4): 411-416 .
, , , , , . Microstructure And Its Scales Of Cu--70%Sn Peritectic Alloy Under High—Temperature Gradient Directional Solidification[J]. Acta Metall Sin, 2005, 41(4): 411-416 .

全文: PDF(321 KB)  
摘要: 在凝固速率1-500 m/s的范围内, Cu--70%Sn包晶合金定向凝固组织由相、包晶相和共晶体组成, 相为领先相与最高界面生长温度假设的分析一致。理论计算结果显示, 当凝固速率大于22.35 mm/s时, 相可直接从液相中析出, 无需通过包晶反应进行。凝固速率越低, 向相固相转变系数越大, 造成相尺寸在1-5m/s范围内变化很小, 而包晶相的体积分数随凝固速率的增加呈现先减后增的变化趋势。
关键词 定向凝固Cu--70%Sn包晶合金枝晶间距    
Abstract:Directionally solidified microstructures of Cu-70%Sn peritectic alloy have been investigated by means of the directional solidification technique. The results show that the solidified microstructure consists of primary , peritectic  and the eutectic phase (+Sn), which is different from the equilibrium microstructure consisting of  phase and eutectic phase. The theoretical analysis results indicate that  phase can be directly precipitated from melt, as the growth rate is more than 22.35 mm/s. At the growth rate ranging from 1 to 5 m/s, the size of  phase doesn’t decrease due to the change of the solid transformation coefficient between  and  phases, which contributes to the peritectic transformation. With the increase of growth rate, the volume fraction of  phase firstly decreases and then increases. The primary dendritic arm spacing ( ) of Cu-70%Sn alloy and growth rate (V) have a relation of V0.325=199.5 m1.325s-0.325 as the growth rate is less than 50 m/s. While, at the growth rate from 50 to 500m/s, the value of V0.528 is equal to 676 m1.528s-0.528.
Key wordsdirectional solidification    Cu--70%Sn peritectic alloy
收稿日期: 2004-06-23     
ZTFLH:  TG132.32  
[1]Brody H D, David S A. Int Conf on Solidification and Casting. London: Institute of Metals, 1977: 144
[2]Trivedi R. Metall Mater Trans, 1995; 26A: 1583
[3]Lao T S, Dobler S, Plapp M, Karma A, Kurz W. Acta Mater, 2003; 51: 599
[4]Kerr H W, Kurz W. Int Mater Rev, 1996; 41(4): 129
[5]Lee J H, Verhoeven J D. J Cryst Growth, 1994; 144: 353
[6]Johnson D R, Inui H, Yamaguchi M. Intermetallics, 1998; 6: 647
[7]Schmitz G J, Laakmann J, Wolters C, Rex S. J Mater Res, 1993; 8: 2774
[8]Loser W, Herlach D M. Metall Trans, 1992; 23A: 1585
[9]Umeda T, Okane T, Kurz W. Acta Mater, 1996: 44: 4209
[10]Boettinger W J, Coriell S R, Greer A L, Karma A, Kurz W, Rappaz M, Trivedi R. Acta Mater, 2000; 48(1): 43
[11]Ha H P, Hunt J D. Metall Mater Trans, 2000; 31A: 29
[12]Saunders N, Miodownik A P. In: Phase Diagrams of Binary Copper alloys. USA: ASM Int, 1994: 412
[13]Fredriksson H, Nylen T. Met Sci, 1982; 16(6): 283
[14]Zou G R. PhD Thesis, Northwestern Polytechical University. Xi'an, 2000 (邹光荣.西北工业大学博士学位论文, 2000)
[15]Kurz W, Fisher D J. Fundamentals of Solidification. Switzerland: Trans Tech Pub. 1984: 81
[16]StJohn D H, Hogan L M. Acta Metall, 1977; 25: 77
[17]Burden M H, Hunt J D. J Cryst Growth, 1974; 22: 99
[18]Hunt J D, Lu S Z. Metall Mater Trans, 1996; 27A(3): 611
[19]Wang M, Lin X, Su Y P, Shen S J, Huang W D. Acta Metall Sin, 2002; 38: 337 (王猛,林鑫,苏云鹏,沈淑娟,黄卫东.金属学报,2002; 38:337)x
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[4] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[5] 郭东伟, 郭坤辉, 张福利, 张飞, 曹江海, 侯自兵. 基于二次枝晶间距变化特征的连铸方坯CET位置判断新方法[J]. 金属学报, 2022, 58(6): 827-836.
[6] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[7] 张小丽, 冯丽, 杨彦红, 周亦胄, 刘贵群. 二次枝晶取向对镍基高温合金晶粒竞争生长行为的影响[J]. 金属学报, 2020, 56(7): 969-978.
[8] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[9] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[10] 方辉,薛桦,汤倩玉,张庆宇,潘诗琰,朱鸣芳. 定向凝固糊状区枝晶粗化和二次臂迁移的实验和模拟[J]. 金属学报, 2019, 55(5): 664-672.
[11] 唐文书,肖俊峰,李永君,张炯,高斯峰,南晴. 再热恢复处理对蠕变损伤定向凝固高温合金γ′相的影响[J]. 金属学报, 2019, 55(5): 601-610.
[12] 杨燕, 杨光昱, 罗时峰, 肖磊, 介万奇. Mg-14.61Gd合金的定向凝固组织及生长取向[J]. 金属学报, 2019, 55(2): 202-212.
[13] 金浩, 贾清, 刘荣华, 线全刚, 崔玉友, 徐东生, 杨锐. 籽晶制备及Ti-47Al合金PST晶体取向控制[J]. 金属学报, 2019, 55(12): 1519-1526.
[14] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
[15] 苏彦庆, 刘桐, 李新中, 陈瑞润, 郭景杰, 傅恒志. 籽晶法定向凝固TiAl基合金片层取向控制[J]. 金属学报, 2018, 54(5): 647-656.