Please wait a minute...
金属学报  2004, Vol. 40 Issue (7): 709-715     
  论文 本期目录 | 过刊浏览 |
柱状晶Al在冷轧过程中微观组织演变的定量表征: II 微观分裂
吴桂林 刘 伟 A. Godfrey 刘 庆
清华大学材料科学与工程系; 北京100084
MICROSTRUCTURAL EVOLUTION OF COLUMNAR GRAIN Al DURING COLD ROLLING II. Mircoscopic Subdivision
WU Guilin; LIU Wei; A. Godfrey; LIU Qing
Department of Materials Science and Engineering; Tsinghua University; Beijing 100084
引用本文:

吴桂林; 刘伟; A.Godfrey; 刘庆 . 柱状晶Al在冷轧过程中微观组织演变的定量表征: II 微观分裂[J]. 金属学报, 2004, 40(7): 709-715 .
, , , . MICROSTRUCTURAL EVOLUTION OF COLUMNAR GRAIN Al DURING COLD ROLLING II. Mircoscopic Subdivision[J]. Acta Metall Sin, 2004, 40(7): 709-715 .

全文: PDF(386 KB)  
摘要: 原始取向为001uv0的柱状晶Al样品分别冷轧到10%, 30%和50%, 采用EBSP技术定量表征了不同取向晶粒基带内的微观分裂. 结果表明晶粒均都分裂为胞块组织, 不同取向晶粒变形后的微观组织结构不同. 随应变量的增加GNBs取向差增加, 并满足23指数关系.Frank公式分析表明, 胞块界面中的位错主要来自由Schmid因子决定的激活滑移位错.
关键词 柱状晶Al冷轧EBSP    
Abstract:Columnar grain Al samples with 001uv0 orientations were cold rolled to reductions of 10%, 30% and 50%, respectively. The microscopic subdivision of the matrix bands in grains with different orientations was quantitatively characterized in detail by using EBSP technique. It is found that all the grains are microscopically subdivided into dislocation cell blocks. But the microstructures of differently oriented grains are different after rolling. With increasing strain, the misorientation angles across the dislocation boundaries increase, following a power relationship with an exponent of 2/3. By the Frank formula, the dislocations in the dislocation boundaries are mainly from the slip systems decided by the Schmid factors.
Key wordscolumnar grain Al    cold rolling    EBSP
收稿日期: 2003-07-24     
ZTFLH:  TG335.12  
[1] Wu G L, Godfrey A, Liu Q. Acta Metall Sin, 2004; 40:699
[2] Hansen N, Juul Jensen D. Proc R Soc Lond A, 1999; 357:1447
[3] Liu Q, Hansen N. Proc R Soc Lond A, 1998; 454: 2555
[4] Liu Q, Maurice C, Driver D, Hansen N. Metall MaterTrans, 1998; 29A: 2333
[5] Akef A, Driver J H. Mater Sci Eng, 1991; A132: 245
[6] Basson F, Driver J H. Acta Mater, 2000; 48: 2101
[7] Li Z J, Liu Q. Mater Sci Eng, 2002; A338: 237
[8] Kuhlmann-Wilsdorf D, Hansen N. Scr Metall, 1991; 25:1557
[9] Bay B, Hansen N, Hughes D A, Kuhlmann-Wilsdorf D.Acta Metall Mater, 1992; 40: 205
[10] Hughes D A, Hansen N. Metall Trans, 1993; 24A: 2021
[11] Liu Q, Juul Jensen D, Hansen N. Acta Mater, 1997; 46:5819
[12] Huang X, Hansen N. Scr Mater, 1997; 37: 1
[13] Huang X. Scr Mater, 1998; 38: 1697
[14] Wert J, Liu Q, Hansen N. Acta Mater, 1995; 43: 4153
[1] 王周头, 袁清, 张庆枭, 刘升, 徐光. 冷轧中碳梯度马氏体钢的组织与力学性能[J]. 金属学报, 2023, 59(6): 821-828.
[2] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[3] 于少霞, 王麒, 邓想涛, 王昭东. GH3600镍基高温合金极薄带的制备及尺寸效应[J]. 金属学报, 2023, 59(10): 1365-1375.
[4] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[5] 蓝春波,梁家能,劳远侠,谭登峰,黄春艳,莫羡忠,庞锦英. 冷轧态Ti-35Nb-2Zr-0.3O合金的异常热膨胀行为[J]. 金属学报, 2019, 55(6): 701-708.
[6] 刘后龙,马明玉,刘玲玲,魏亮亮,陈礼清. 热轧板退火工艺对19Cr2Mo1W铁素体不锈钢织构与成形性能的影响[J]. 金属学报, 2019, 55(5): 566-574.
[7] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[8] 赵晓丽, 张永健, 邵成伟, 惠卫军, 董瀚. 两相区退火处理冷轧0.1C-5Mn中锰钢的氢脆敏感性[J]. 金属学报, 2018, 54(7): 1031-1041.
[9] 王丽娜, 杨平, 李凯, 崔凤娥, 毛卫民. 高锰TRIP钢冷轧以及α'-M逆转变过程的相变和织构演变[J]. 金属学报, 2018, 54(12): 1756-1766.
[10] 莫远科,张志豪,谢建新,潘洪江. 再结晶退火对高硅电工钢冷轧带材组织、有序结构和力学性能的影响*[J]. 金属学报, 2016, 52(11): 1363-1371.
[11] 付波,杨王玥,李龙飞,孙祖庆. C含量对冷轧C-Mn-Al-Si,系TRIP钢组织及力学性能的影响[J]. 金属学报, 2013, 29(4): 408-414.
[12] 张宁 杨平 毛卫民. 柱状晶对Fe-3%Si电工钢冷轧织构演变规律的影响[J]. 金属学报, 2012, 48(7): 782-788.
[13] 都祥元 苏国跃. 核电站控制棒驱动机构驱动杆用1Cr13厚壁管材成分选择与工艺优化[J]. 金属学报, 2011, 47(9): 1155-1158.
[14] 陈畅 汪明朴 王珊 贾延琳 左波 夏福中. Ta-7.5%W合金箔材冷轧过程中的位错结构演变[J]. 金属学报, 2011, 47(8): 984-989.
[15] 王东 马宗义. 固溶处理后冷轧变形7050铝合金时效工艺研究[J]. 金属学报, 2010, 46(5): 581-588.