Please wait a minute...
金属学报  2004, Vol. 40 Issue (7): 716-720     
  论文 本期目录 | 过刊浏览 |
Cu附着膜的屈服强度与退火温度的关系
覃 明 嵇 宁 李家宝 马素媛 陈昌荣 宋忠孝 何家文
中国科学院金属研究所沈阳材料科学国家(联合)实验室; 沈阳 110016
RELATIONSHIP BETWEEN THE YIELD STRENGTH AND ANNEALING TEMPERATURE OF A Cu FILM ADHERENT TO SUBSTRATE
QIN Ming; JI Vincent (JI Ning); LI Jiabao; MA Suyuan; CHEN Changrong; SONG Zhongxiao; HE Jiawen
Shenyang National Laboratory for Materials Science; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110016
引用本文:

覃; 明; 嵇宁; 李家宝; 马素媛; 陈昌荣; 宋忠孝; 何家文 . Cu附着膜的屈服强度与退火温度的关系[J]. 金属学报, 2004, 40(7): 716-720 .
, , , , , , , . RELATIONSHIP BETWEEN THE YIELD STRENGTH AND ANNEALING TEMPERATURE OF A Cu FILM ADHERENT TO SUBSTRATE[J]. Acta Metall Sin, 2004, 40(7): 716-720 .

全文: PDF(876 KB)  
摘要: 利用X射线拉伸实验研究了具有二维残余应力的Cu附着膜的屈服强度与退火温度的关系. 结果表明, Cu附着膜的条件屈服点随着退火温度的增高而减小, 退火温度在150---300 ℃间变化时, 减小幅度最大, 出现明显的拐点.这主要由于Cu附着膜在该温度范围内发生了再结晶, 使得原有的大部分组织结构强化因素消失了. Cu附着膜的屈服强度远远高于块体Cu材的屈服强度.
关键词 Cu膜二维应力屈服强度    
Abstract:Using X--ray tensile test, the relationship between the yield strength and annealing temperature for a Cu film with biaxial residual stress adherent to substrate was investigated. The results indicate that the proof stress of the film decreases with increasing annealing temperature. When annealing temperature rose from 150℃ to 300℃, the decreasing amplitude of proof stress is the largest. The reason of this phenomenon is that recrystallization in film occurred at 300℃, and a majority of structure strengthening effects disappeared. The yield strength of the Cu film on the steel substrate is greatly higher than that of block Cu.
Key wordsCu film    biaxial stress    yield strength
收稿日期: 2003-07-15     
ZTFLH:  TG113.25  
[1] Oliva A I, Quintana P, Ceh O, Corona J E, Aguilar M.Thin Solid Films, 1999; 353: 1
[2] Hummel R E. Int Mater Rev, 1994; 39: 97
[3] d'Heurle F M. Proc IEEE, 1971; 59: 1409
[4] Flinn P A. J Mater Res, 1991; 6: 1498
[5] Murarka S P. Mater Sci Eng R, 1997; 19: 87
[6] Ma D J, Xu K W, He J W. Acta Metall Sin, 1999; 35: 1049(马德军,徐可为,何家文.金属学报, 1999;35:1049)
[7] Bell T J, Field J S, Swain M V. Mater Res Soc Symp Proc,1992; 239: 331
[8] Mearini G T, Hoffman R W. J Electron Mater, 1993; 22:623
[9] D'Antonio C, Hirschhorn J, Tarshis L. Trans Metall Soc AIME, 1963; 227: 1346
[10] Karimi A, Shojaei O R, Kruml T, Martin J L. Thin Solid Films, 1997; 308: 334
[11] Doerner M F, Brennan S. J Appl Phys, 1988; 63: 126
[12] Ma D J, Xu K W, He J W, Lu J. Surf Coat Technol, 1999; 116-119: 128
[13] Li Z H, Wu G Y, Chen W R, Wang Y Y. J Vac Sci Technol, 1996; 14A: 2693
[14] Noyan I C, Sheikh G. Mater Res Soc Symp Proc, 1993; 308: 3
[15] Qin M, Ji V, Xu J H, Li J B, Xu K W, Ma S L. Mater Sci Forum, 2002; 404-407: 671
[16] Li J B, Liu F Z, Ji V. Surf Eng, 1998; 14: 469
[17] Matucha K H. Structure and Properties of Nonferrous Alloys, In: Cahn R W, Hassen P, Kramer E J eds. Materials Science and Technology: a Comprehensive Treatment, Vol.8 Trans by Ding D Y et al, Beijing: Science Press, 1999: 267(材料科学与技术丛书, Cohn R W,Hassen P,Kramer E J主编,第8卷,非铁合金的结构与性能,Matucha K H主编,丁道云等译,北京:科学出版社, 1999:267)
[18] Murbach H P, Wilman H. Proc Phys Soc, 1953; 66B: 905
[19] Jiang Q T, Thomas M E. J Vac Sci Technol, 2001; 19B:762
[20] Ueno K, Ritzdorf T, Grace S. J Appl Phys, 1999; 86: 4930
[21] Yu L L. Practical Handbook of Nonferrous Alloys, Beijing:China Machiner Press, 2002: 17(虞莲莲.实用有色金属材料手册,北京:机械工业出版社,2002:17)
[22] Zhang J M. PhD Dissertation, Xi'an Jiaotong University, Xi'an, 2002(张建民.西安交通大学博士学位论文,西安, 2002)
[1] 沈国慧, 胡斌, 杨占兵, 罗海文. 回火温度对含 δ 铁素体高铝中锰钢力学性能和显微组织的影响[J]. 金属学报, 2022, 58(2): 165-174.
[2] 谢锐,吕铮,卢晨阳,李正元,丁学勇,刘春明. 9Cr-ODS钢中纳米析出相的SAXS和TEM研究*[J]. 金属学报, 2016, 52(9): 1053-1062.
[3] 陈瑞,许庆彦,柳百成. Al-Mg-Si合金中针棒状析出相时效析出动力学及强化模拟研究*[J]. 金属学报, 2016, 52(8): 987-999.
[4] 张可,雍岐龙,孙新军,李昭东,赵培林. 卷取温度对Ti-V-Mo复合微合金化超高强度钢组织及力学性能的影响*[J]. 金属学报, 2016, 52(5): 529-537.
[5] 顾伟,李静媛,王一德. 晶粒尺寸及Taylor因子对过时效态7050铝合金挤压型材横向力学性能的影响*[J]. 金属学报, 2016, 52(1): 51-59.
[6] 秦飞, 项敏, 武伟. 纳米压痕法确定TSV-Cu的应力-应变关系*[J]. 金属学报, 2014, 50(6): 722-726.
[7] 王小娜, 韩利战, 顾剑锋. NZ30K镁合金时效析出动力学与强化模型的研究*[J]. 金属学报, 2014, 50(3): 355-360.
[8] 张龙飞,燕平,赵京晨,韩凤奎,曾强. DD407单晶高温合金760℃屈服强度的LCP模型分析[J]. 金属学报, 2013, 29(4): 489-494.
[9] 黎业生 汪伟. 纳米压痕法测量Cu膜的硬度和弹性模量[J]. 金属学报, 2010, 46(9): 1098-1102.
[10] NIE Defu ZHAO Jie. 相续室温蠕变中屈服强度附近的应力应变行为[J]. 金属学报, 2009, 45(7): 840-843.
[11] 崔 航 陈怀宁 陈 静 黄春玲 吴昌忠. 球形压痕法评价材料屈服强度和应变硬化指数的有限元分析[J]. 金属学报, 2009, 45(2): 189-194.
[12] 张继旺 鲁连涛 张卫华. 微粒子喷丸中碳钢疲劳性能分析[J]. 金属学报, 2009, 45(11): 1378-1383.
[13] 肖甫 赵新青 徐惠彬 姜海昌 戎利建. (NiTi)50-0.5xNbx形状记忆合金的阻尼性能及力学性能[J]. 金属学报, 2009, 45(1): 18-24.
[14] 郭斌; 周健; 单德彬; 王慧敏 . 黄铜箔拉伸屈服强度的尺寸效应[J]. 金属学报, 2008, 44(4): 419-422 .
[15] 杨吉军; 徐可为 . 磁控溅射Cu膜表面演化的多尺度行为[J]. 金属学报, 2007, 43(9): 903-906 .