Please wait a minute...
金属学报  2004, Vol. 40 Issue (1): 1-7     
  论文 本期目录 | 过刊浏览 |
不同Mn含量低碳钢过冷奥氏体形变过程中的铁素体相变
周荣锋;杨王玥;孙祖庆
北京科技大学材料科学与工程学院
Ferrite Transformation During Deformation of Undercooled Austenite in Low Carbon Steels with Different Mn Contents
zhou Rongfeng;YANG Wangyue; SUN Zuqing
School of Materials Science and Engineering;University of Science and Technology Beijing
引用本文:

周荣锋; 杨王玥; 孙祖庆 . 不同Mn含量低碳钢过冷奥氏体形变过程中的铁素体相变[J]. 金属学报, 2004, 40(1): 1-7 .
, , . Ferrite Transformation During Deformation of Undercooled Austenite in Low Carbon Steels with Different Mn Contents[J]. Acta Metall Sin, 2004, 40(1): 1-7 .

全文: PDF(731 KB)  
摘要: 通过热模拟压缩实验,对C,Si含量基本相同、Mn含量不同的低碳钢过冷奥氏体在形变温度760℃、形变速率1/s条件下单向压缩变形过程中的组织演变进行研究,分析了Mn对低碳钢过冷奥氏体变形特征、转变动力学特征以及形变强化相变铁素体晶粒细化的影响。结果表明,Mn延迟低碳钢形变强化相变的进行, Mn含量提高,完成相变所需总应变相应提高。形变强化铁素体转变动力学可分三个阶段,随Mn含量增加, 各阶段所需时间延长, 应变提高。通过形变强化相变, Mn含量(质量分数,%)为0.48, 0.84和1.29三种钢可获得平均晶粒截径分别为3.571.60,2.001.05和2.291.02m的微细等轴铁素体晶粒以及第二组织弥散分布的复相组织。
关键词 低碳钢形变强化相变晶粒细化    
Abstract:The microstructure evolution during deformation of undercooled austenite in three low carbon steels with much close contents of Si and C but different contents of Mn has been investigated by means of hot compression simulation experiment at 760℃ and strain rate of 1 s-1. The effects of the content of Mn on the deformed behavior of undercooled austentie, the kinetics characteristics of deformation enhanced ferrite transformation and the ferrite grain size have been studied. It was found that the addition of Mn delays the transformation during deformation of undercooled austenite and higher true strain for the transformation is needed with increasing Mn content. Transformation kinetics can be divided into three stages, longer time and higher true strain are needed for each stages with increasing Mn content in the steels. Deformation enhanced transformation induces forming ultra--fine equiaxed ferrite grains with sizes of 3.57±1.60, 2.00±1.05 and 2.29±1.02 um in steels with 0.48, 0.84 and 1.29 Mn respectively, and homogeneously distributed minor second phases.
Key wordslow carbon steel    deformation enhanced transformation    grainrefinement
收稿日期: 2003-01-28     
ZTFLH:  TG111.2  
[1] Yang W Y, Hu A M, Qi J J, Sun Z Q. Chin J Mater Res, 2001;15:171(杨王玥,胡安民,齐俊杰,孙祖庆.材料研究学报,2001;15:171)
[2] Chiaki O, Tomoyoshi O, Takuzo I and Yasuhi U. Trans ISIJ, 1980; 20:833
[3] Tamura I, Sekine H, Tanaka T, Ouchi C. Trans by Wang G D, Liu Z Y, Xiong S W. Thermomechanical Processing of High Strength Low Alloy Steels. Beijing: Metallurgy Industry Press. 1992:89(Tamura I,Sekine H,Tanaka T著.王国栋,刘振宇,熊尚武译.高强度低合金钢的控制轧制与控制冷却.北京:冶金工业出版社.1992:89)
[4] Yang W Y, Hu A M, Sun Z Q. Acta Metall Sin, 2000; 36: 1055(杨王玥,胡安民,孙祖庆.金属学报,2000;36:1055)
[5] Qi J J. PhD Thesis, Univ Sci Technol Beijing, Beijing,2002(齐俊杰.北京科技大学博士学位论文.2002)
[6] Aaronson H I. The Mechanism of Phase Transformation in Crystalline. London: Institute of Metals, 1969:2790
[7] Liu Y Q. Heat Treatment of Steel. Beijing: Metallurgy Industry Press. 1983:42(刘永铨.钢的热处理.北京:冶金工业出版社.1983:42)
[8] Qi J J, Yang W Y, Sun Z Q. Acta Metall Sin, 2002; 38: 897(齐俊杰,杨王玥,孙祖庆.金属学报,2002;38:897)
[1] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[2] 彭治强, 柳前, 郭东伟, 曾子航, 曹江海, 侯自兵. 基于大数据挖掘的连铸结晶器传热独立变化规律[J]. 金属学报, 2023, 59(10): 1389-1400.
[3] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[4] 吴国华, 童鑫, 蒋锐, 丁文江. 铸造Mg-RE合金晶粒细化行为研究现状与展望[J]. 金属学报, 2022, 58(4): 385-399.
[5] 丁宁, 王云峰, 刘轲, 朱训明, 李淑波, 杜文博. 高应变速率多向锻造Mg-8Gd-1Er-0.5Zr合金的微观组织、织构及力学性能[J]. 金属学报, 2021, 57(8): 1000-1008.
[6] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[7] 武华健, 程仁山, 李景仁, 谢东升, 宋锴, 潘虎成, 秦高梧. Al含量对Mg-Sn-Ca合金微观组织与力学性能的影响[J]. 金属学报, 2020, 56(10): 1423-1432.
[8] 张军,介子奇,黄太文,杨文超,刘林,傅恒志. 镍基铸造高温合金等轴晶凝固成形技术的研究和进展[J]. 金属学报, 2019, 55(9): 1145-1159.
[9] 邓丽萍,崔凯旋,汪炳叔,向红亮,李强. AZ31镁合金室温多道次压缩过程微观组织和织构演变的研究[J]. 金属学报, 2019, 55(8): 976-986.
[10] 刘灿帅,田朝晖,张志明,王俭秋,韩恩厚. 地质处置低氧过渡期X65低碳钢腐蚀行为研究[J]. 金属学报, 2019, 55(7): 849-858.
[11] 李淑波, 杜文博, 王旭东, 刘轲, 王朝辉. Zr对Mg-Gd-Er合金晶粒细化机理的影响[J]. 金属学报, 2018, 54(6): 911-917.
[12] 毛轶哲, 李建国, 封蕾. 573 K高温时效处理的Al-10Mg合金中粗大β(Al3Mg2)相对热压缩组织演化的影响及机理[J]. 金属学报, 2018, 54(10): 1451-1460.
[13] 张丽丽, 江鸿翔, 赵九洲, 李璐, 孙倩. 溶质Ti对Al-Ti-B中间合金细化Al影响的新认识:TiB2粒子的动力学行为及溶质Ti的影响[J]. 金属学报, 2017, 53(9): 1091-1100.
[14] 王大伟,修世超. 焊接温度对碳钢/奥氏体不锈钢扩散焊接头界面组织及性能的影响[J]. 金属学报, 2017, 53(5): 567-574.
[15] 张志强,董利民,关少轩,杨锐. TC16钛合金辊模拉丝过程中的显微组织和力学性能[J]. 金属学报, 2017, 53(4): 415-422.