|
|
|
| 钼合金焊接接头高温蠕变性能研究进展 |
张林杰, 张栩菁, 宁杰( ) |
| 西安交通大学 材料科学与工程学院 金属材料强度全国重点实验室 西安 710049 |
|
| Research Progress on the High-Temperature Creep Properties of Molybdenum Alloy Welded Joints |
ZHANG Linjie, ZHANG Xujing, NING Jie( ) |
| State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China |
引用本文:
张林杰, 张栩菁, 宁杰. 钼合金焊接接头高温蠕变性能研究进展[J]. 金属学报, 2026, 62(1): 47-63.
Linjie ZHANG,
Xujing ZHANG,
Jie NING.
Research Progress on the High-Temperature Creep Properties of Molybdenum Alloy Welded Joints[J]. Acta Metall Sin, 2026, 62(1): 47-63.
| [1] |
Yang Q H, Hua X J, Quan C F, et al. Microstructure evolution and strengthening mechanism of boron doped molybdenum alloy solid solution rolled plates [J]. J. Alloys Compd., 2025, 1035: 181568
|
| [2] |
Wei Y, Yang H L, Tao L Z, et al. Research progress and development of strengthening-toughening methods for molybdenum alloys prepared by powder metallurgy [J]. J. Alloys Compd., 2025, 1010: 177099
|
| [3] |
Du F S, Duan B H, Wang D Z, et al. Preparation, microstructure and mechanical properties of a Ce-PSZ reinforced molybdenum alloy [J]. Int. J. Refract. Met. Hard Mater., 2025, 131: 107204
|
| [4] |
Leclercq A, Mouret T, Brailovski V. Laser powder bed fusion of molybdenum: Density, structure and mechanical properties at room and elevated temperatures [J]. Mater. Sci. Eng., 2025, A929: 148004
|
| [5] |
Xu L J, Sun T L, Zhou Y C, et al. Evaluation of tensile property and strengthening mechanism of molybdenum alloy bars doped with different ultrafine oxides [J]. Trans. Nonferrous Met. Soc. China, 2023, 33: 3083
|
| [6] |
Li T X, Lu Y P, Cao Z Q, et al. Opportunity and challenge of refractory high-entropy alloys in the field of reactor structural materials [J]. Acta Metall. Sin., 2021, 57: 42
|
| [6] |
李天昕, 卢一平, 曹志强 等. 难熔高熵合金在反应堆结构材料领域的机遇与挑战 [J]. 金属学报, 2021, 57: 42
|
| [7] |
Wadsworth J, Morse G R, Chewey P M. The microstructure and mechanical properties of a welded molybdenum alloy [J]. Mater. Sci. Eng., 1983, 59: 257
|
| [8] |
Zhang Y Y, Wang T, Jiang S Y, et al. Microstructure evolution and embrittlement of electron beam welded TZM alloy joint [J]. Mater. Sci. Eng., 2017, A700: 512
|
| [9] |
Wang J T, Wang J, Li Y J, et al. Progress of research on welding for molybdenum alloys [J]. High Temp. Mater. Proc., 2014, 33: 193
|
| [10] |
Zhang L J, Liu J Z, Pei J Y, et al. Effects of power modulation, multipass remelting and Zr addition upon porosity defects in laser seal welding of end plug to thin-walled molybdenum alloy [J]. J. Manuf. Process., 2019, 41: 197
|
| [11] |
Zhang L L, Zhang L J, Long J, et al. Effects of titanium on grain boundary strength in molybdenum laser weld bead and formation and strengthening mechanisms of brazing layer [J]. Mater. Des., 2019, 169: 107681
|
| [12] |
Zhang L J, Pei J Y, Zhang L L, et al. Laser seal welding of end plug to thin-walled nanostructured high-strength molybdenum alloy cladding with a zirconium interlayer [J]. J. Mater. Process. Technol., 2019, 267: 338
|
| [13] |
Zheng H Y, Jiao B Q, Wang Q L, et al. A direct evidence for lattice selective rotation of molybdenum alloys single crystals in tensile deformation [J]. Mater. Today Commun., 2024, 39: 108867
|
| [14] |
Hu W Q, Wei L F, Li Y C, et al. Phase interface engineering: A new route towards ultrastrong yet ductile Mo alloy [J]. Mater. Sci. Eng., 2024, A889: 145867
|
| [15] |
Hu W Q, Du Z F, Dong Z Z, et al. The synthesis of TiC dispersed strengthened Mo alloy by freeze-drying technology and subsequent low temperature sintering [J]. Scr. Mater., 2021, 198: 113831
|
| [16] |
Feng Q, Lu S, Li W D, et al. Recent progress in alloy design and creep mechanism of γ'-strengthened Co-based superalloys [J]. Acta Metall. Sin., 2023, 59: 1125
|
| [16] |
冯 强, 路 松, 李文道 等. γ'相强化钴基高温合金成分设计与蠕变机理研究进展 [J]. 金属学报, 2023, 59: 1125
|
| [17] |
Kuang J, Wen W, Cheng P M, et al. Creep condition-oriented design of molybdenum alloys with La2O3 addition assisted by microstructure-based crystal plasticity modeling [J]. J. Mater. Sci. Technol., 2025, 217: 138
|
| [18] |
Guo Y F, Tian J, Xiao S L, et al. Elevated temperature performance and creep behavior of Y2O3 reinforced Ti-48Al-6Nb alloy at the brittle-ductile transition temperature [J]. J. Alloys Compd., 2021, 871: 159497
|
| [19] |
Webb J, Gollapudi S, Charit I. An overview of creep in tungsten and its alloys [J]. Int. J. Refract. Met. Hard Mater., 2019, 82: 69
|
| [20] |
Ragab R, Parker J, Li M, et al. Requirements for and challenges in developing improved creep ductility-based constitutive models for tempered martensitic CSEF steels [J]. J. Mater. Res. Technol., 2022, 17: 3337
|
| [21] |
Owen D M, Langdon T G. Low stress creep behavior: An examination of Nabarro-Herring and Harper-Dorn creep [J]. Mater. Sci. Eng., 1996, A216: 20
|
| [22] |
Shibanuma K, Sagara K, Fukada T, et al. Integrated model for simulating Coble creep deformation and void nucleation/growth in polycrystalline solids—Part I: Theoretical framework [J]. Mater. Des., 2024, 244: 113198
|
| [23] |
Sakane M, Shiratsuchi T, Tsukada Y. Grain boundary sliding model for assessing creep-fatigue life of Sn37Pb eutectic solder [J]. Int. J. Fatigue, 2021, 146: 106132
|
| [24] |
Lee D H, Hong K T, Nam S W. Intergraular fracture behavior of an Al-3at.%Mg solid solution alloy under the viscous glide creep condition [J]. Scr. Metall. Mater., 1991, 25: 823
|
| [25] |
Li F, Yuan D L, Chen K H, et al. A novel creep model with synergetic Orowan bypassing and climbing mechanisms in nickel-base superalloys [J]. Trans. Nonferrous Met. Soc. China, 2024, 34: 1167
|
| [26] |
Jin L Z, Sandström R. Creep of copper canisters in power-law breakdown [J]. Comput. Mater. Sci., 2008, 43: 403
|
| [27] |
Cheng P M, Yang C, Zhang P, et al. Enhancing the high-temperature creep properties of Mo alloys via nanosized La2O3 particle addition [J]. J. Mater. Sci. Technol., 2022, 130: 53
|
| [28] |
Agronov D, Freund E, Rosen A. Effects of substructure on the creep properties of TZM alloy [A]. Strength of Metals and Alloys (ICSMA 7) [M]. Amsterdam: Elsevier, 1985: 695
|
| [29] |
Klopp W D, Witzke W R. Mechanical properties of electron-beam-melted molybdenum and dilute Mo-Re alloys [J]. Metall. Trans., 1973, 4: 2006
|
| [30] |
Zhang H F, Zheng J P, Yang Q F, et al. Study of high temperature inner pressure creep property of Mo-3Nb alloy single crystal [J]. Procedia Eng., 2012, 27: 1568
|
| [31] |
Liu T, Hu P, Li S L, et al. Oxygen content effect on mechanical properties and microstructure of TZM alloy [J]. Mater. Charact., 2023, 203: 113075
|
| [32] |
Wu J, Liu C Q, He Y, et al. Deformation mechanism diagram and deformation instability of a Mo-Re alloy during the hot compression [J]. J. Mater. Res. Technol., 2024, 32: 2224
|
| [33] |
Jiang W, Gao J, Zhong W Y, et al. Research status of high-temperature creep properties of molybdenum alloys [J]. China Molybdenum Ind., 2025, 49(1): 1
|
| [33] |
姜 玮, 高 进, 钟武烨 等. 钼合金高温蠕变性能研究现状 [J]. 中国钼业, 2025, 49(1): 1
|
| [34] |
Xu H L, Huang L, Zhang W, et al. Mechanical and microstructural responses in molybdenum-rhenium alloys under hot compressions [J]. J. Mater. Res. Technol., 2024, 30: 3877
|
| [35] |
Wang G D. Study on the mechanical and creep properties of molybdenum rhenium alloy [D]. Beijing: Central Iron Steel Research Institute, 2025
|
| [35] |
王广达. 钼铼合金的力学与蠕变性能研究 [D]. 北京: 钢铁研究总院, 2025
|
| [36] |
Lu K L, Luo B, Wang G D, et al. High-temperature mechanical properties and dynamic recrystallization of Mo-14Re alloy [J]. Mater. Charact., 2024, 208: 113617
|
| [37] |
Yao L Y, Gao Y M, Xiao P, et al. The phase and morphology evolution of Y-Zr-O complex oxide dispersion-strengthened (ODS) Mo powders during mechanical alloying and annealing [J]. Int. J. Refract. Met. Hard Mater., 2024, 124: 106828
|
| [38] |
Bukhanovskii V V, Borisenko V A, Kharchenko V K. High-temperature strength and creep of weld seams of molybdenum alloys in low-cycle loading [J]. Strength Mater., 1994, 26: 811
|
| [39] |
Zhang L L, Zhou Y, Zhang L J, et al. Effect of niobium on the mechanical strength of the laser beam welding joints of molybdenum [J]. Int. J. Refract. Met. Hard Mater., 2023, 113: 106207
|
| [40] |
Kim S E. Creep behavior in dilute nanocrystalline thin-film aluminum alloys [J]. Mater. Sci. Eng., 2025, A939: 148491
|
| [41] |
Kombaiah B, Dasari S, Bhave C, et al. Creep-induced elemental redistribution at grain boundaries of 304L stainless steel—An experimental evidence for diffusional creep mechanisms [J]. Acta Mater., 2025, 294: 121137
|
| [42] |
Liu G, Zhang G J, Jiang F, et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility [J]. Nat. Mater., 2013, 12: 344
|
| [43] |
Noda T, Kainuma T, Okada M. Effect of oxygen on the intergranular brittlement of molybdenum [J]. J. Jpn. Inst. Met. Mater., 1984, 48: 25
|
| [44] |
Rengstorff G W P, Fischer R B. Cast molybdenum of high purity [J]. JOM, 1952, 4: 157
|
| [45] |
Olds L E, Rengstorff G W P. Effects of oxygen, nitrogen, and carbon on the ductility of cast molybdenum [J]. JOM, 1956, 8: 150
|
| [46] |
Chatterjee A, Kumar S, Tewari R, et al. Welding of Mo-based alloy using electron beam and laser GTAW hybrid welding techniques [J]. Metall. Mater. Trans., 2016, 47A: 1143
|
| [47] |
Srivastava S C, Seigle L L. Solubility and thermodynamic properties of oxygen in solid molybdenum [J]. Metall. Trans., 1974, 5: 49
|
| [48] |
Eyert V, Horny R, Höck K H, et al. Embedded peierls instability and the electronic structure of MoO2 [J]. J. Phys.: Condens. Matter, 2000, 12: 4923
|
| [49] |
Yang X W, Meng T X, Su Y, et al. The effect of inclusions and pores on creep crack propagation of linear friction welded joints of GH4169 superalloy [J]. J. Mater. Res. Technol., 2024, 29: 4636
|
| [50] |
Li K W, He H S, Zhang J W, et al. Evolution of Cu-rich particles and Laves phases in a novel Cu-alloyed martensitic heat-resistant steel during interrupted creep and the corresponding effects on microstructural recovery [J]. Mater. Charact., 2024, 218: 114558
|
| [51] |
Chen G Q, Liu J P, Shu X, et al. Study on microstructure and performance of molybdenum joint welded by electron beam [J]. Vacuum, 2018, 154: 1
|
| [52] |
Dong J, Zhong W Y, Zhang Z, et al. Microstructure transformation and pore formation mechanism of Mo-14Re alloy weld by vacuum electron beam welding [J]. Vacuum, 2023, 218: 112594
|
| [53] |
Wang X J, Yang J Z, Wang S C, et al. Mechanism of pore evolution in electron beam welding joints of Mo-14Re alloy [J]. J. Mater. Res. Technol., 2024, 30: 6457
|
| [54] |
Wang X J, Yang J Z, Wang S C, et al. Mechanisms of pore defects evolution in Mo-14Re alloy welded joints under dislocation back stress [J]. Int. J. Refract. Met. Hard Mater., 2025, 130: 107155
|
| [55] |
Wang T, Zhang Y Y, Jiang S Y, et al. Stress relief and purification mechanisms for grain boundaries of electron beam welded TZM alloy joint with zirconium addition [J]. J. Mater. Process. Technol., 2018, 251: 168
|
| [56] |
Zhang L L, Zhang L J, Ning J, et al. Effect of various combinations of Ti and Zr interlayers on the tensile properties of laser welded joints of molybdenum [J]. Int. J. Refract. Met. Hard Mater., 2021, 101: 105662
|
| [57] |
Xie M X, Zhang L, Ren X T, et al. Microstructural and mechanical properties of laser-welded molybdenum joints with the addition of nano-sized ZrC in the weld pool [J]. Int. J. Refract. Met. Hard Mater., 2025, 126: 106952
|
| [58] |
Yu H, Zhang H D, Zhang L J, et al. Regulation of performance of laser-welded socket joint of Mo-14Re ultra-high-temperature heat pipe by introducing Ti into both weld and heat affected zone [J]. J. Mater. Res. Technol., 2023, 22: 569
|
| [59] |
Wen L J, Chen F G, Li H Y, et al. Improve the weldability of molybdenum by introducing Ti during electron beam welding [J]. Mater. Lett., 2025, 394: 138572
|
| [60] |
Yu H, Zhang L J, Zhang H D, et al. Effect of the addition of titanium filler on high temperature strength and microstructural characteristics of laser welded tube-end plug socket joints of molybdenum alloy [J]. Int. J. Refract. Met. Hard Mater., 2024, 120: 106598
|
| [61] |
Zhao J X, Zhang H D, Zhang L J, et al. Laser welding of molybdenum socket joint for ultra-high-temperature heat pipes based on niobium alloying [J]. Trans. Nonferrous Met. Soc. China, 2025, 35: 511
|
| [62] |
Xie M X, Ren X T, Zhang L, et al. Evolution of NbC during laser welding and its impacts on the performance of molybdenum alloy joint [J]. Int. J. Refract. Met. Hard Mater., 2024, 125: 106862
|
| [63] |
Jing K, Liu R, Xie Z M, et al. Excellent high-temperature strength and ductility of the ZrC nanoparticles dispersed molybdenum [J]. Acta Mater., 2022, 227: 117725
|
| [64] |
Kamata S Y, Kanekon D, Lu Y Y, et al. Ultrahigh-temperature tensile creep of TiC-reinforced Mo-Si-B-based alloy [J]. Sci. Rep., 2018, 8: 10487
|
| [65] |
Jiang W, Wang W J, Zhang G D, et al. Microstructure evolution of dilute Mo-Re alloy tubes under biaxial stress [J]. At. Energy Sci. Technol., 2025, 59: 677
|
| [65] |
姜 玮, 王卫军, 张国栋 等. 低铼钼合金管双轴应力下的微观组织演变研究 [J]. 原子能科学技术, 2025, 59: 677
|
| [66] |
Li J M, Geng S N, Wang Y L, et al. Mitigation of porosity in adjustable-ring-mode laser welding of medium-thick aluminum alloy [J]. Int. J. Heat Mass Transfer, 2024, 227: 125514
|
| [67] |
Zhang J, Shan J G, Ren J L, et al. Reducing the porosity in die-cast magnesium alloys during laser welding [J]. Weld. J., 2013, 92: 101s
|
| [68] |
Wu Z, Wan J Q, Zhang Y, et al. The influence of welding speed on nanosecond laser welding of AZ31B magnesium alloy and 304 stainless steel [J]. Opt. Laser Technol., 2024, 168: 109997
|
| [69] |
Xie M X, Li Y X, Shang X T, et al. Effect of heat input on porosity defects in a fiber laser welded socket joint made of powder metallurgy molybdenum alloy [J]. Materials, 2019, 12: 1433
|
| [70] |
Fang Y Z, Dai G Q, Guo Y H, et al. Effect of laser oscillation on the microstructure and mechanical properties of laser melting deposition titanium alloys [J]. Acta Metall. Sin., 2023, 59: 136
|
| [70] |
方远志, 戴国庆, 郭艳华 等. 激光摆动对激光熔化沉积钛合金微观组织及力学性能的影响 [J]. 金属学报, 2023, 59: 136
|
| [71] |
Liu T T, Mu Z Y, Hu R Z, et al. Sinusoidal oscillating laser welding of 7075 aluminum alloy: Hydrodynamics, porosity formation and optimization [J]. Int. J. Heat Mass Transfer, 2019, 140: 346
|
| [72] |
Liu M, Shao C D, Zheng Z G, et al. The effect of laser oscillation welding on porosity suppression for medium-thick Al alloy with high Mg content [J]. Opt. Laser Technol., 2024, 175: 110795
|
| [73] |
Hao K D, Gao M. Effect of beam oscillating behavior on pore inhibition and microstructure evolution mechanisms of laser welded Q235 steel [J]. J. Mater. Res. Technol., 2021, 11: 1816
|
| [74] |
Katayama S, Abe Y, Mizutani M, et al. Deep penetration welding with high-power laser under vacuum [J]. Trans. JWRI, 2011, 40: 15
|
| [75] |
Li L Q, Peng G C, Wang J M, et al. Numerical and experimental study on keyhole and melt flow dynamics during laser welding of aluminium alloys under subatmospheric pressures [J]. Int. J. Heat Mass Transfer, 2019, 133: 812
|
| [76] |
Jiang M, Chen X, Chen Y B, et al. Mitigation of porosity defects in fiber laser welding under low vacuum [J]. J. Mater. Process. Technol., 2020, 276: 116385
|
| [77] |
Cao Z Y. Study on the technology and characteristics of TIG welding for molybdenum alloy [D]. Harbin: Harbin Institute of Technology, 2017
|
| [77] |
曹志宇. 钼合金TIG焊接工艺及其焊接接头研究 [D]. 哈尔滨: 哈尔滨工业大学, 2017
|
| [78] |
Karim M A, Tanvir G, Jadhav S, et al. Tailoring porosity and mechanical properties of wire-based directed energy deposited molybdenum alloys through hot isostatic pressing [J]. Appl. Mater. Today, 2025, 42: 102618
|
| [79] |
Xu Z N, Li C L, Du J J. Creep behavior analysis of gas foil bearings at elevated temperature [J]. Int. J. Mech. Sci., 2025, 302: 110593
|
| [80] |
Cho G S, Ahn G B, Choe K H. Creep microstructures and creep behaviors of pure molybdenum sheet at 0.7Tm [J]. Int. J. Refract. Met. Hard Mater., 2016, 60: 52
|
| [81] |
Huang W Y, Li Y, Yuan J, et al. Study on the enhanced accelerated-creep resistance and microstructural features of IN718 superalloy inertia friction welding joint containing a high entropy alloy interlayer [J]. Mater. Today Commun., 2025, 46: 112639
|
| [82] |
Ning J, Feng C, Zhang L J, et al. High-temperature creep behavior at 350 oC in laser-welded joints of a novel heat-resistant aluminum alloy Al-12Ce-0.4Sc [J]. Mater. Sci. Eng., 2025, A935: 148367
|
| [83] |
Li W, Holt R A. Anisotropic thermal creep of internally pressurized Zr-2.5Nb tubes [J]. J. Nucl. Mater., 2010, 401: 25
|
| [84] |
Gollapudi S, Charit I, Murty K L. Creep mechanisms in Ti-3Al-2.5V alloy tubing deformed under closed-end internal gas pressurization [J]. Acta Mater., 2008, 56: 2406
|
| [85] |
Dymáček P. Recent developments in small punch testing: Applications at elevated temperatures [J]. Theor. Appl. Fract. Mech., 2016, 86: 25
|
| [86] |
Ding H R, Peng J, Lu D Y, et al. Comparison study of small punch test, hydraulic bulge test and uniaxial tensile test for typical pressure vessel CrMo steel [J]. Int. J. Press. Vessel. Pip., 2025, 217: 105563
|
| [87] |
Zhao L, Jing H Y, Xu L Y, et al. Evaluating of creep property of distinct zones in P92 steel welded joint by small punch creep test [J]. Mater. Des., 2013, 47: 677
|
| [88] |
Wang X, Xu L Y, Zhao L, et al. Defect-based additive manufactured creep performance evaluation via small punch test [J]. Int. J. Mech. Sci., 2024, 279: 109565
|
| [89] |
Zhu S S, Wu Y P, Hong S, et al. Room temperature nanoindentation creep behavior of CoNiCrMo-based high entropy amorphous alloy coatings prepared by HVAF [J]. Intermetallics, 2023, 163: 108076
|
| [90] |
Shehbaz T, Khan F N, Junaid M, et al. High through-put nanoindentation mapping and indentation creep behavior of P-TIG welded CpTi and Inconel 718 using a Nb-interlayer [J]. Mater. Today Commun., 2022, 33: 104994
|
| [91] |
Zhang L J, Yu H, Zeng X L, et al. Influences of Si-Ti combined alloying on microstructures and properties of laser welded socket joints of molybdenum [J]. Opt. Laser Technol., 2024, 175: 110749
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|