Please wait a minute...
金属学报  2025, Vol. 61 Issue (8): 1217-1228    DOI: 10.11900/0412.1961.2023.00443
  研究论文 本期目录 | 过刊浏览 |
γ-TiAl合金在700 ℃空气中的长时高温氧化行为和组织演变
周志春1,2, 刘仁慈1(), 张建达1,3, 杨超4, 崔玉友1, 杨锐1
1.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2.中国科学技术大学 材料科学与工程学院 沈阳 110016
3.沈阳工业大学 材料科学与工程学院 沈阳 110870
4.中国航发商用航空发动机有限责任公司 上海 200241
Long-Term Oxidation Behavior and Microstructural Evolution of γ-TiAl Alloys at 700 oC in Air
ZHOU Zhichun1,2, LIU Renci1(), ZHANG Jianda1,3, YANG Chao4, CUI Yuyou1, YANG Rui1
1.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3.School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
4.AECC Commercial Aero-Engine Co. Ltd., Shanghai 200241, China
引用本文:

周志春, 刘仁慈, 张建达, 杨超, 崔玉友, 杨锐. γ-TiAl合金在700 ℃空气中的长时高温氧化行为和组织演变[J]. 金属学报, 2025, 61(8): 1217-1228.
Zhichun ZHOU, Renci LIU, Jianda ZHANG, Chao YANG, Yuyou CUI, Rui YANG. Long-Term Oxidation Behavior and Microstructural Evolution of γ-TiAl Alloys at 700 oC in Air[J]. Acta Metall Sin, 2025, 61(8): 1217-1228.

全文: PDF(4180 KB)   HTML
摘要: 

γ-TiAl合金长期服役于高温环境中,其表面氧化和组织演变会影响合金部件的力学性能。因此,研究γ-TiAl合金在高温条件下的氧化行为至关重要。本工作研究了γ-TiAl铸造合金Ti-45Al-2Nb-2Mn-1B (45XD合金)和Ti-48Al-2Nb-2Cr (4822合金)在700 ℃空气中的长时等温氧化行为和组织演变。结果表明,4822合金的氧化增重和氧化膜增厚明显大于45XD合金。在0~2000 h内2种合金均表现出周期性氧化增重行为,即快速增长后缓慢增长交替进行,后期2者的氧化速率保持稳定。2种合金样品表面均形成了以表层TiO2和Al2O3为主,靠近基体处为Ti/Al-N和富Nb/Mn(Cr)的分层氧化膜。45XD合金表面氧化产物细小致密,而4822合金表面氧化产物粗大疏松,内部存在微孔,且γ晶界处的大尺寸α2相氧化严重,因此4822合金的抗高温氧化性能较差。受合金元素扩散的影响,45XD合金亚表层组织中的α2片层发生分解:α2γ,在亚表层形成了一层富Al贫Ti的γ区;45XD合金内部组织中的α2片层也部分转变为γ相,并且γ片层不断粗化。在4822合金内部组织中,γ晶粒内的α2和晶界处的α2 + β0体积分数明显下降。

关键词 γ-TiAl合金等温氧化增重分层氧化膜组织稳定性    
Abstract

γ-TiAl alloys are a new generation of high-temperature lightweight materials characterized by low density, high specific modulus of elasticity, excellent high-temperature strength, and creep resistance, making them highly suitable for aviation, aerospace, and automotive engine applications. A typical application of the alloys is in the low-pressure turbine blades of aero-engines, such as GEnx and Trent XWB developed by the General Electric and Rolls-Royce, respectively. Their alloy compositions are Ti-48Al-2Cr-2Nb and Ti-45Al-2Nb-2Mn-1B (atomic fraction, %), respectively. γ-TiAl alloys are required for long-term service at 600-700 oC; however, they react readily with oxygen to form oxide scale when exposed in air at high temperatures, compromising service safety and reliability. Thus, understanding the long-term oxidation behavior of γ-TiAl alloys during service at high temperatures is imperative. In this study, the oxide scale and microstructural evolution of cast Ti-45Al-2Nb-2Mn-1B alloy (45XD alloy) and Ti-48Al-2Nb-2Cr alloy (4822 alloy) at 700 oC in air for 0-2000 h were investigated using SEM and TEM. The mass gain of both alloys was measured during oxidation, and their oxidation behaviors were compared. The 4822 alloy exhibited a notably higher mass gain than the 45XD alloy. Both alloys demonstrated periodic mass gain behavior during oxidation for 0-2000 h—alternating rapid and slow gains—with stabilization in the later stages. The oxide scales formed layered structures, primarily of TiO2 and Al2O3, on the surface of both alloys; the scale of 45XD alloy was continuous and dense, whereas that of the 4822 alloy was porous. Additionally, the study revealed that α2 lamellae in the subsurface of the 45XD alloy decomposed during oxidation, forming an Al-rich and Ti-lean γ zone on the subsurface. α2 lamellae in the bulk microstructure of the 45XD alloy were also decomposed and transformed into γ phase. The 4822 alloy experienced a significant reduction in the volume fractions of α2 in equiaxed γ grains and α2 + β0 at equiaxed γ grain boundaries.

Key wordsγ-TiAl alloy    isothermal oxidation    mass gain    layered oxide scale    microstructural stability
收稿日期: 2023-11-13     
ZTFLH:  TG146.2  
基金资助:云南省重大科技专项项目(202302AB080009);中国科学院稳定支持基础研究领域青年团队计划项目(YSBR-025);国家重点研发计划项目(2021YFB3702605);国家科技重大专项项目(J2019-VII-0002-0142)
通讯作者: 刘仁慈,rcliu@imr.ac.cn,主要从事钛铝合金及其部件研究
Corresponding author: LIU Renci, professor, Tel: (024)83970951, E-mail: rcliu@imr.ac.cn
作者简介: 周志春,男,1998年生,博士
图1  45XD和4822合金铸件初始组织的OM像
图2  45XD和4822合金在700 ℃空气中的恒温氧化动力学曲线和氧化膜厚度
AlloyStage

Time

h

Average mass gain rate

mg·cm-2·h-1

45XD0-501.86 × 10-3
50-1005.77 × 10-4
100-5009.66 × 10-4
500-20006.42 × 10-4
48220-304.54 × 10-3
30-1009.09 × 10-4
100-4002.37 × 10-3
400-20006.91 × 10-4
表1  45XD和4822合金氧化动力学曲线分段和平均氧化增重速率
图3  45XD和4822合金样品在700 ℃空气中氧化不同时间后的表面XRD谱
图4  45XD和4822合金样品氧化不同时间后的表面形貌
AlloyPositionOAlTiNbMnCr
45XD153.9521.1123.820.710.41-
264.5316.8617.900.370.34-
368.2814.6216.650.280.17-
4822456.8019.2522.300.85-0.80
569.610.4229.750.19-0.03
658.8822.7017.610.45-0.36
772.720.4026.680.16-0.04
表2  45XD和4822合金样品表面氧化产物化学成分分析 (atomic fraction / %)
图5  45XD和4822合金样品700 ℃空气中氧化不同时间后截面显微组织的背散射电子(BSE)像
图6  45XD合金样品的初始显微组织及700 ℃氧化2000 h后的显微组织
图7  4822合金样品初始显微组织及700 ℃氧化2000 h后的显微组织
图8  45XD合金样品在700 ℃空气中氧化不同时间后反应界面的显微组织及元素分布
图9  4822合金样品在700 ℃空气中氧化不同时间后反应界面的显微组织及元素分布
图10  45XD和4822合金在700 ℃空气中的氧化膜形成和亚表面组织演变示意图
[1] Kim Y W. Intermetallic alloys based on gamma titanium aluminide [J]. JOM, 1989, 41(7): 24
[2] Clemens H, Mayer S. Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys [J]. Adv. Eng. Mater., 2013, 15: 191
[3] Yang R. Advances and challenges of TiAl base alloys [J]. Acta Metall. Sin., 2015, 51: 129
doi: 10.11900/0412.1961.2014.00396
[3] 杨 锐. 钛铝金属间化合物的进展与挑战 [J]. 金属学报, 2015, 51: 129
[4] Kim Y W, Kim S L. Advances in gammalloy materials-processes-application technology: Successes, dilemmas, and future [J]. JOM, 2018, 70: 553
[5] Clemens H, Mayer S. Intermetallic titanium aluminides in aerospace applications—Processing, microstructure and properties [J]. Mater. High Temp., 2016, 33: 560
[6] Bewlay B P, Nag S, Suzuki A, et al. TiAl alloys in commercial aircraft engines [J]. Mater. High Temp., 2016, 33: 549
[7] Rahmel A, Schütze M, Quadakkers W J. Fundamentals of TiAl oxidation—A critical review [J]. Mater. Corros., 1995, 46: 271
[8] Mengis L, Ulrich A S, Watermeyer P, et al. Oxidation behaviour and related microstructural changes of two β0-phase containing TiAl alloys between 600 oC and 900 oC [J]. Corros. Sci., 2021, 178: 109085
[9] Shaaban A, Hayashi S, Takeyama M. A comparative study on the oxidation behaviours of a TNM alloy in argon and oxygen atmospheres at 650 oC [J]. Corros. Sci., 2021, 185: 109415
[10] Liu R C, Wang P, Cao R X, et al. Influence of thermal exposure at 700 oC on the microstructure and morphology in the surface of β-solidifying γ-TiAl alloys [J]. Acta Metall. Sin., 2022, 58: 1003
[10] 刘仁慈, 王 鹏, 曹如心 等. 700 ℃热暴露对β凝固γ-TiAl合金表面组织及形貌的影响 [J]. 金属学报, 2022, 58: 1003
doi: 10.11900/0412.1961.2021.00071
[11] Tian S W, He A R, Liu J H, et al. Oxidation resistance of TiAl alloy improved by hot-pack rolling and cyclic heat treatment [J]. Mater. Charact., 2021, 178: 111196
[12] Pan Y, Lu X, Hui T L, et al. High-temperature oxidation behaviour of TiAl alloys with Co addition [J]. J. Mater. Sci., 2021, 56: 815
[13] Cui Y Y, Xiang H F, Jia Q, et al. Effects of thermal exposure on the tensile and fatigue properties of cast Ti-47Al-2Cr-2Nb-0.15B alloy [J]. Acta Metall. Sin., 2005, 41: 108
[13] 崔玉友, 项宏福, 贾 清 等. 热暴露对铸造Ti-47Al-2Cr-2Nb-0.15B合金的拉伸和疲劳性能的影响 [J]. 金属学报, 2005, 41: 108
[14] Dowling W E, Donlon W T. The effect of surface film formation from thermal exposure on the ductility of Ti-48A1-1V-0.2C (at%) [J]. Scr. Metall. Mater., 1992, 27: 1663
[15] Thomas M, Berteaux O, Popoff F, et al. Effects of exposure at 700 oC on RT tensile properties in a PM γ-TiAl alloy [J]. Intermetallics, 2006, 14: 1143
[16] Zhou Z C, Liu R C, Shen Y Y, et al. Microstructural evolution and embrittlement of a β-solidifying γ-TiAl alloy during exposure at 700 °C [J]. Mater. Sci. Eng., 2022, A852: 143704
[17] Pather R, Mitten W A, Holdway P, et al. The effect of high temperature exposure on the tensile properties of γ TiAl alloys [J]. Intermetallics, 2003, 11: 1015
[18] Draper S L, Lerch B A, Locci I E, et al. Effect of exposure on the mechanical properties of Gamma MET PX [J]. Intermetallics, 2005, 13: 1014
[19] Wu X H, Huang A, Hu D, et al. Oxidation-induced embrittlement of TiAl alloys [J]. Intermetallics, 2009, 17: 540
[20] Kelly T J, Austin C M, Fink P J, et al. Effect of elevated temperature exposure on cast gamma titanium aluminide (Ti-48Al-2Cr-2Nb) [J]. Scr. Metall. Mater., 1994, 30: 1105
[21] Wang F H, Tang Z L. Oxidation and protection of TiAl intermetallics [J]. Chin. J. Mater. Res., 1998, 12: 337
[21] 王福会, 唐兆麟. TiAl金属间化合物的高温氧化与防护研究进展 [J]. 材料研究学报, 1998, 12: 337
[22] Rahmel A, Spencer P J. Thermodynamic aspects of TiAl and TiSi2 oxidation: The Al-Ti-O and Si-Ti-O phase diagrams [J]. Oxid. Met., 1991, 35: 53
[23] Becker S, Rahmel A, Schorr M, et al. Mechanism of isothermal oxidation of the intel-metallic TiAl and of TiAl alloys [J]. Oxid. Met., 1992, 38: 425
[24] Lin J P, Zhao L L, Li G Y, et al. Effect of Nb on oxidation behavior of high Nb containing TiAl alloys [J]. Intermetallics, 2011, 19: 131
[25] Garip Y, Ozdemir O. A study of the cycle oxidation behavior of the Cr/Mn/Mo alloyed Ti-48Al-based intermetallics prepared by ECAS [J]. J. Alloys Compd., 2020, 818: 152818
[26] Shida Y, Anada H. The effect of various ternary additives on the oxidation behavior of TiAl in high-temperature air [J]. Oxid. Met., 1996, 45: 197
[27] Stroosnijder M F, Haanappel V A C, Clemens H. Oxidation behaviour of TiAl-based intermetallics-influence of heat treatment [J]. Mater. Sci. Eng., 1997, A239-240: 842
[28] Haanappel V A C, Hofman R, Sunderkötter J D, et al. The influence of microstructure on the isothermal and cyclic-oxidation behavior of Ti-48Al-2Cr at 800 oC [J]. Oxid. Met., 1997, 48: 263
[29] Pérez P, Jiménez J A, Frommeyer G, et al. The influence of the alloy microstructure on the oxidation behavior of Ti-46Al-1Cr-0.2Si alloy [J]. Oxid. Met., 2000, 53: 99
[30] Haanappel V A C, Clemens H, Stroosnijder M F. The effect of microstructure on the oxidation behaviour of Ti-46.5Al-4(Cr,Nb,Ta,B) and Ti-47Al-4(Cr,Nb,Mo,B) [J]. Mater. High Temp., 2002, 19: 19
[31] Maurice V, Despert G, Zanna S, et al. XPS study of the initial stages of oxidation of α2-Ti3Al and γ-TiAl intermetallic alloys [J]. Acta Mater., 2007, 55: 3315
[32] Li M S. High Temperature Corrosion of Metals [M]. Beijing: Metallurgical Industry Press, 2001: 5
[32] 李美栓. 金属的高温腐蚀 [M]. 北京: 冶金工业出版社, 2001: 5
[33] Huang Z W, Sun C. On the role of thermal exposure on the stress controlled fatigue behaviour of a high strength titanium-aluminum alloy [J]. Mater. Sci. Eng., 2014, A615: 29
[34] Zhu H L, Seo D Y, Maruyama K, et al. Effect of microstructural stability on creep behavior of 47XD TiAl alloys with fine-grained fully lamellar structure [J]. Scr. Mater., 2005, 52: 45
[35] Huang Z W. Thermal stability of Ti-44Al-4Nb-4Hf-0.2Si-1B alloy [J]. Intermetallics, 2013, 37: 11
[1] 王强, 李小兵, 郝俊杰, 陈波, 张滨, 张二林, 刘奎. 一种新型Ti-Al-Mn-Nb合金的固态相变行为[J]. 金属学报, 2025, 61(7): 1060-1070.
[2] 刘金来, 孙晶霞, 孟杰, 李金国. 一种第三代单晶高温合金的组织稳定性与持久性能[J]. 金属学报, 2024, 60(6): 770-776.
[3] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[4] 温冬辉, 姜贝贝, 王清, 李相伟, 张鹏, 张书彦. MoNb改性FeCrAl不锈钢高温组织演变和力学性能[J]. 金属学报, 2022, 58(7): 883-894.
[5] 刘先锋, 刘冬, 刘仁慈, 崔玉友, 杨锐. Ti-43.5Al-4Nb-1Mo-0.1B合金的包套热挤压组织与拉伸性能[J]. 金属学报, 2020, 56(7): 979-987.
[6] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[7] 黄太文,卢晶,许瑶,王栋,张健,张家晨,张军,刘林. ReTa对抗热腐蚀单晶高温合金900 ℃长期时效组织稳定性的影响[J]. 金属学报, 2019, 55(11): 1427-1436.
[8] 王慧远, 张行, 徐新宇, 查敏, 王珵, 马品奎, 管志平. 超塑性轻合金组织稳定性的研究进展及展望[J]. 金属学报, 2018, 54(11): 1618-1624.
[9] 王博,张军,潘雪娇,黄太文,刘林,傅恒志. W对第三代镍基单晶高温合金组织稳定性的影响[J]. 金属学报, 2017, 53(3): 298-306.
[10] 胡雪, 黄礼新, 严伟, 王威, 单以银, 杨柯. Y2O3颗粒弥散强化低活化钢的组织稳定性研究*[J]. 金属学报, 2015, 51(6): 641-650.
[11] 金涛,周亦胄,王新广,刘金来,孙晓峰,胡壮麒. 先进镍基单晶高温合金组织稳定性及力学行为的研究进展[J]. 金属学报, 2015, 51(10): 1153-1162.
[12] 蔡元华 梁瑞光 苏占培 张济山 . 喷射成形Al-22Si-5Fe合金的热变形行为及组织稳定性[J]. 金属学报, 2010, 46(7): 814-820.
[13] 秦学智 郭建亭 袁超 侯介山 叶恒强. 两种铸造镍基高温合金在长期时效期间的微观组织和力学性能演变[J]. 金属学报, 2010, 46(2): 213-220.
[14] 谢锡善 董建新 付书红 张麦仓. γ´´γ´相强化的Ni-Fe基高温合金GH4169的研究与发展[J]. 金属学报, 2010, 46(11): 1289-1302.
[15] 王宏宇 左敦稳 王明娣 邵建兵. 纳米CeO2p对镍基高温合金表面NiCoCrAlY激光熔覆涂层氧化行为的影响[J]. 金属学报, 2009, 45(8): 971-977.