|
|
γ-TiAl合金在700 ℃空气中的长时高温氧化行为和组织演变 |
周志春1,2, 刘仁慈1( ), 张建达1,3, 杨超4, 崔玉友1, 杨锐1 |
1.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016 2.中国科学技术大学 材料科学与工程学院 沈阳 110016 3.沈阳工业大学 材料科学与工程学院 沈阳 110870 4.中国航发商用航空发动机有限责任公司 上海 200241 |
|
Long-Term Oxidation Behavior and Microstructural Evolution of γ-TiAl Alloys at 700 oC in Air |
ZHOU Zhichun1,2, LIU Renci1( ), ZHANG Jianda1,3, YANG Chao4, CUI Yuyou1, YANG Rui1 |
1.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 3.School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China 4.AECC Commercial Aero-Engine Co. Ltd., Shanghai 200241, China |
引用本文:
周志春, 刘仁慈, 张建达, 杨超, 崔玉友, 杨锐. γ-TiAl合金在700 ℃空气中的长时高温氧化行为和组织演变[J]. 金属学报, 2025, 61(8): 1217-1228.
Zhichun ZHOU,
Renci LIU,
Jianda ZHANG,
Chao YANG,
Yuyou CUI,
Rui YANG.
Long-Term Oxidation Behavior and Microstructural Evolution of γ-TiAl Alloys at 700 oC in Air[J]. Acta Metall Sin, 2025, 61(8): 1217-1228.
[1] |
Kim Y W. Intermetallic alloys based on gamma titanium aluminide [J]. JOM, 1989, 41(7): 24
|
[2] |
Clemens H, Mayer S. Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys [J]. Adv. Eng. Mater., 2013, 15: 191
|
[3] |
Yang R. Advances and challenges of TiAl base alloys [J]. Acta Metall. Sin., 2015, 51: 129
doi: 10.11900/0412.1961.2014.00396
|
[3] |
杨 锐. 钛铝金属间化合物的进展与挑战 [J]. 金属学报, 2015, 51: 129
|
[4] |
Kim Y W, Kim S L. Advances in gammalloy materials-processes-application technology: Successes, dilemmas, and future [J]. JOM, 2018, 70: 553
|
[5] |
Clemens H, Mayer S. Intermetallic titanium aluminides in aerospace applications—Processing, microstructure and properties [J]. Mater. High Temp., 2016, 33: 560
|
[6] |
Bewlay B P, Nag S, Suzuki A, et al. TiAl alloys in commercial aircraft engines [J]. Mater. High Temp., 2016, 33: 549
|
[7] |
Rahmel A, Schütze M, Quadakkers W J. Fundamentals of TiAl oxidation—A critical review [J]. Mater. Corros., 1995, 46: 271
|
[8] |
Mengis L, Ulrich A S, Watermeyer P, et al. Oxidation behaviour and related microstructural changes of two β0-phase containing TiAl alloys between 600 oC and 900 oC [J]. Corros. Sci., 2021, 178: 109085
|
[9] |
Shaaban A, Hayashi S, Takeyama M. A comparative study on the oxidation behaviours of a TNM alloy in argon and oxygen atmospheres at 650 oC [J]. Corros. Sci., 2021, 185: 109415
|
[10] |
Liu R C, Wang P, Cao R X, et al. Influence of thermal exposure at 700 oC on the microstructure and morphology in the surface of β-solidifying γ-TiAl alloys [J]. Acta Metall. Sin., 2022, 58: 1003
|
[10] |
刘仁慈, 王 鹏, 曹如心 等. 700 ℃热暴露对β凝固γ-TiAl合金表面组织及形貌的影响 [J]. 金属学报, 2022, 58: 1003
doi: 10.11900/0412.1961.2021.00071
|
[11] |
Tian S W, He A R, Liu J H, et al. Oxidation resistance of TiAl alloy improved by hot-pack rolling and cyclic heat treatment [J]. Mater. Charact., 2021, 178: 111196
|
[12] |
Pan Y, Lu X, Hui T L, et al. High-temperature oxidation behaviour of TiAl alloys with Co addition [J]. J. Mater. Sci., 2021, 56: 815
|
[13] |
Cui Y Y, Xiang H F, Jia Q, et al. Effects of thermal exposure on the tensile and fatigue properties of cast Ti-47Al-2Cr-2Nb-0.15B alloy [J]. Acta Metall. Sin., 2005, 41: 108
|
[13] |
崔玉友, 项宏福, 贾 清 等. 热暴露对铸造Ti-47Al-2Cr-2Nb-0.15B合金的拉伸和疲劳性能的影响 [J]. 金属学报, 2005, 41: 108
|
[14] |
Dowling W E, Donlon W T. The effect of surface film formation from thermal exposure on the ductility of Ti-48A1-1V-0.2C (at%) [J]. Scr. Metall. Mater., 1992, 27: 1663
|
[15] |
Thomas M, Berteaux O, Popoff F, et al. Effects of exposure at 700 oC on RT tensile properties in a PM γ-TiAl alloy [J]. Intermetallics, 2006, 14: 1143
|
[16] |
Zhou Z C, Liu R C, Shen Y Y, et al. Microstructural evolution and embrittlement of a β-solidifying γ-TiAl alloy during exposure at 700 °C [J]. Mater. Sci. Eng., 2022, A852: 143704
|
[17] |
Pather R, Mitten W A, Holdway P, et al. The effect of high temperature exposure on the tensile properties of γ TiAl alloys [J]. Intermetallics, 2003, 11: 1015
|
[18] |
Draper S L, Lerch B A, Locci I E, et al. Effect of exposure on the mechanical properties of Gamma MET PX [J]. Intermetallics, 2005, 13: 1014
|
[19] |
Wu X H, Huang A, Hu D, et al. Oxidation-induced embrittlement of TiAl alloys [J]. Intermetallics, 2009, 17: 540
|
[20] |
Kelly T J, Austin C M, Fink P J, et al. Effect of elevated temperature exposure on cast gamma titanium aluminide (Ti-48Al-2Cr-2Nb) [J]. Scr. Metall. Mater., 1994, 30: 1105
|
[21] |
Wang F H, Tang Z L. Oxidation and protection of TiAl intermetallics [J]. Chin. J. Mater. Res., 1998, 12: 337
|
[21] |
王福会, 唐兆麟. TiAl金属间化合物的高温氧化与防护研究进展 [J]. 材料研究学报, 1998, 12: 337
|
[22] |
Rahmel A, Spencer P J. Thermodynamic aspects of TiAl and TiSi2 oxidation: The Al-Ti-O and Si-Ti-O phase diagrams [J]. Oxid. Met., 1991, 35: 53
|
[23] |
Becker S, Rahmel A, Schorr M, et al. Mechanism of isothermal oxidation of the intel-metallic TiAl and of TiAl alloys [J]. Oxid. Met., 1992, 38: 425
|
[24] |
Lin J P, Zhao L L, Li G Y, et al. Effect of Nb on oxidation behavior of high Nb containing TiAl alloys [J]. Intermetallics, 2011, 19: 131
|
[25] |
Garip Y, Ozdemir O. A study of the cycle oxidation behavior of the Cr/Mn/Mo alloyed Ti-48Al-based intermetallics prepared by ECAS [J]. J. Alloys Compd., 2020, 818: 152818
|
[26] |
Shida Y, Anada H. The effect of various ternary additives on the oxidation behavior of TiAl in high-temperature air [J]. Oxid. Met., 1996, 45: 197
|
[27] |
Stroosnijder M F, Haanappel V A C, Clemens H. Oxidation behaviour of TiAl-based intermetallics-influence of heat treatment [J]. Mater. Sci. Eng., 1997, A239-240: 842
|
[28] |
Haanappel V A C, Hofman R, Sunderkötter J D, et al. The influence of microstructure on the isothermal and cyclic-oxidation behavior of Ti-48Al-2Cr at 800 oC [J]. Oxid. Met., 1997, 48: 263
|
[29] |
Pérez P, Jiménez J A, Frommeyer G, et al. The influence of the alloy microstructure on the oxidation behavior of Ti-46Al-1Cr-0.2Si alloy [J]. Oxid. Met., 2000, 53: 99
|
[30] |
Haanappel V A C, Clemens H, Stroosnijder M F. The effect of microstructure on the oxidation behaviour of Ti-46.5Al-4(Cr,Nb,Ta,B) and Ti-47Al-4(Cr,Nb,Mo,B) [J]. Mater. High Temp., 2002, 19: 19
|
[31] |
Maurice V, Despert G, Zanna S, et al. XPS study of the initial stages of oxidation of α2-Ti3Al and γ-TiAl intermetallic alloys [J]. Acta Mater., 2007, 55: 3315
|
[32] |
Li M S. High Temperature Corrosion of Metals [M]. Beijing: Metallurgical Industry Press, 2001: 5
|
[32] |
李美栓. 金属的高温腐蚀 [M]. 北京: 冶金工业出版社, 2001: 5
|
[33] |
Huang Z W, Sun C. On the role of thermal exposure on the stress controlled fatigue behaviour of a high strength titanium-aluminum alloy [J]. Mater. Sci. Eng., 2014, A615: 29
|
[34] |
Zhu H L, Seo D Y, Maruyama K, et al. Effect of microstructural stability on creep behavior of 47XD TiAl alloys with fine-grained fully lamellar structure [J]. Scr. Mater., 2005, 52: 45
|
[35] |
Huang Z W. Thermal stability of Ti-44Al-4Nb-4Hf-0.2Si-1B alloy [J]. Intermetallics, 2013, 37: 11
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|