Please wait a minute...
金属学报  2025, Vol. 61 Issue (9): 1305-1319    DOI: 10.11900/0412.1961.2023.00465
  研究论文 本期目录 | 过刊浏览 |
聚变用低活化9Cr-ODS钢在高温高压水中的腐蚀行为及机理
付海阳1,2, 张家榕1,3(), 李尧志1,2, 王旗涛1,2, 李新乐1,2, 严伟1,3, 单以银1,3, 李艳芬1,3()
1 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2 中国科学技术大学 材料科学与工程学院 沈阳 110016
3 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016
Corrosion Behavior and Mechanism of Low Activation 9Cr-ODS Steel in High Temperature and High Pressure Water Environment for the Application in Fusion Reactors
FU Haiyang1,2, ZHANG Jiarong1,3(), LI Yaozhi1,2, WANG Qitao1,2, LI Xinle1,2, YAN Wei1,3, SHAN Yiyin1,3, LI Yanfen1,3()
1 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

付海阳, 张家榕, 李尧志, 王旗涛, 李新乐, 严伟, 单以银, 李艳芬. 聚变用低活化9Cr-ODS钢在高温高压水中的腐蚀行为及机理[J]. 金属学报, 2025, 61(9): 1305-1319.
Haiyang FU, Jiarong ZHANG, Yaozhi LI, Qitao WANG, Xinle LI, Wei YAN, Yiyin SHAN, Yanfen LI. Corrosion Behavior and Mechanism of Low Activation 9Cr-ODS Steel in High Temperature and High Pressure Water Environment for the Application in Fusion Reactors[J]. Acta Metall Sin, 2025, 61(9): 1305-1319.

全文: PDF(4521 KB)   HTML
摘要: 

为了探究低活化9Cr氧化物弥散(9Cr-ODS)钢在设计服役环境下的氧化行为及机理,通过模拟聚变堆高温高压循环水腐蚀实验,研究了其在聚变堆设计冷却水中的腐蚀行为,并与中国低活化马氏体(CLAM)钢进行对比,阐释了腐蚀过程中表面及截面微观结构的演化和氧化产物的形成与转变过程。结果表明,在325 ℃、15.5 MPa的静态高温高压水和动态高温高压水(温度25 ℃、压力15.5 MPa、流速5 mL/min)中,9Cr-ODS钢的腐蚀增重和氧化膜厚度均比CLAM钢低。在静态水中腐蚀时,2种材料的腐蚀产物均为外层为颗粒状的Fe3O4、内层为连续的富Cr、Fe 的尖晶石的双层结构;随腐蚀时间从200 h增加至1000 h,氧化物颗粒尺寸和氧化膜厚度逐渐增加;然而在动态水中,2种钢的腐蚀增重及氧化膜厚度反而降低,其中CLAM钢外层氧化物的种类保持不变,但9Cr-ODS钢中除Fe3O4外还有少量Fe2O3生成。在相同腐蚀条件下,弥散的纳米氧化物、细化的晶粒以及较高的基体O含量对ODS钢耐腐蚀性能产生了积极作用,促进了保护性氧化膜内层的形成,同时也降低了腐蚀增重速率,使得9Cr-ODS钢具有比CLAM钢更优异的耐腐蚀性能。

关键词 低活化ODS钢高温高压水腐蚀氧化膜    
Abstract

The China fusion engineering test reactor is a bridge between the international thermonuclear experimental reactor and future fusion demonstration reactors. The harsh service environment of the fusion reactor, including high heat flow density, strong neutron irradiation, and high temperature and high pressure coolant corrosion, demands higher requirements on structural materials than conventional nuclear energy structural materials. Low activation oxide dispersion-strengthened (ODS) steels, which are developed based on reduced activation ferritic/martensitic steels, are considered as promising candidate fusion reactor structural materials because of their high creep strength and excellent resistance to irradiation. In this study, 9Cr-ODS steel prepared by mechanical alloying (MA) and Chinese low activated martensitic (CLAM) steel prepared by vacuum smelting were selected because of their excellent mechanical properties and superior radiation tolerance. The main difference between the two steels is the grain size: the average grain size of the 9Cr-ODS steel is 200-500 nm, whereas that of CLAM steel is 10-20 μm. Furthermore, the 9Cr-ODS steel was added with Y2O3 during MA, which improved its mechanical properties and thermal stability. Corrosion experiments were conducted in static and dynamic (flow rate of 5 mL/min) ultrapure water at 325 oC and 15.5 MPa. Ultrapure water had an electrical conductivity of 0.1 μS/cm and a dissolved oxygen content of 10 × 10-9. The exposure time for both steels were set as 200, 500, and 1000 h. Results indicated that under static and dynamic conditions, the corrosion mass gain and oxide film thickness of the 9Cr-ODS steel were less than those of the CLAM steel. Under static conditions, the corrosion product of both materials exhibits a double-layer structure with granular Fe3O4 in the outer layer and continuous Cr- and Fe-rich spinel in the inner layer. As the exposure time increased from 200 h to 1000 h, the size and thickness of the oxide particles gradually increased. However, under dynamic conditions with a flow rate of 5 mL/min, the surface of the 9Cr-ODS steel formed not only Fe3O4 but also a small amount of Fe2O3, while the type of oxide in the outer layer of the CLAM steel remains unchanged. In contrast to the static condition, both steels exhibited decreased corrosion mass loss and oxide film thickness because of the dynamic water scouring effect and the buildup of H2 on the surface caused by water decomposition through oxidation. Overall, under same corrosion conditions, the presence of dispersed oxides, grain refinement, and a high matrix oxygen concentration positively enhanced the corrosion resistance of the 9Cr-ODS steel. This enhancement facilitated the formation of a protective inner oxide layer and reduced the corrosion mass loss rate, thereby demonstrating the superior corrosion resistance of the 9Cr-ODS steel under high temperature and high pressure water environments compared with the CLAM steel.

Key wordslow activation ODS steel    high temperature and high pressure water    corrosion    oxide film
收稿日期: 2023-11-29     
ZTFLH:  TG172.82  
基金资助:国家自然科学基金项目(51971217);国家磁约束核聚变能发展研究专项项目(2019YFE03130000);中国科学院战略先导科技专项项目(XDA0410000)
通讯作者: 李艳芬,yfli@imr.ac.cn,主要从事先进能源用高性能钢铁材料研究;
张家榕,jrzhang14s@imr.ac.cn,主要从事先进核用钢铁材料研究
Corresponding author: LI Yanfen, professor, Tel: (024)23978990, E-mail: yfli@imr.ac.cn;
ZHANG Jiarong, Tel: (024)83973136, E-mail: jrzhang14s@imr.ac.cn
作者简介: 付海阳,1998年生,男,博士生
SteelCSiCrMnWTaYOTiVSPFe
9Cr-ODS0.1-9.31-2.04-0.260.220.21---Bal.
CLAM0.0910.048.930.491.510.15---0.1518 × 10-430 × 10-4Bal.
表1  9Cr氧化物弥散强化(9Cr-ODS)和中国低活化马氏体(CLAM)钢的化学成分 (mass fraction / %)
SteelNormalizing temperature / oCNormalizing time / minTempering temperature / oCTempering time / min
9Cr-ODS10506080060
CLAM9803076090
表2  9Cr-ODS和CLAM钢的热处理工艺
图1  腐蚀实验回路装置示意图
图2  9Cr-ODS钢及CLAM钢基体晶粒尺寸的EBSD像
图3  9Cr-ODS和CLAM钢在静态和动态高温高压水中的氧化增重曲线
图4  9Cr-ODS钢和CLAM钢在静态和动态高温高压水中腐蚀后的XRD谱
图5  静态条件下腐蚀不同时间后9Cr-ODS和CLAM钢表面腐蚀产物的SEM像
SteelPointFeCrO
9Cr-ODSA (Matrix)66.0014.5619.45
B (Large-size oxide particle)38.280.9060.49
CLAMC (Matrix)58.694.8736.44
D (Large-size oxide particle)49.801.0049.19
表3  图5中标记点的EDS结果 (mass fraction / %)
图6  动态条件下腐蚀不同时间后9Cr-ODS钢和CLAM钢的表面腐蚀产物形貌
SteelPointFeCrO
9Cr-ODSA (Matrix)46.667.8245.52
B (Large-size oxide particle)38.113.7458.15
CLAMC (Matrix)46.519.0644.43
D (Large-size oxide particle)31.897.9361.19
表4  图6中标记点的EDS结果 (mass fraction / %)
图7  9Cr-ODS和CLAM钢在静态和动态高温高压水中腐蚀1000 h后外表面Fe的详细XPS
图8  9Cr-ODS钢在动态高温高压水中腐蚀1000 h后Fe2p3/2的非线性最小二乘(NLS)拟合结果
图9  9Cr-ODS和CLAM钢在静态和动态高温高压水中腐蚀1000 h后外表面中Cr的详细XPS
图10  9Cr-ODS和CLAM钢在静态高温高压水下腐蚀不同时间后横截面的SEM像
图11  动态条件下9Cr-ODS钢和CLAM钢中表面腐蚀产物横截面的SEM像
图12  9Cr-ODS钢在静态、动态高温高压水中腐蚀1000 h后横截面的SEM像及EPMA元素分布图
图13  9Cr-ODS钢在动态高温高压水中腐蚀1000 h后氧化膜截面的TEM像和SAED花样
No.FormationΔG0=RTlnpO2 / (kJ·mol-1·O2-1)
14Fe3O4+O2=6Fe2O3-327.801
243Fe+O2=23Fe2O3-446.466
332Fe+O2=12Fe3O4-461.299
42Fe+2Cr2O3+O2=2FeCr2O4-600.519
512Fe+Cr+O2=12FeCr2O4-654.714
643Cr+O2=23Cr2O3-672.778
表5  在325 ℃、25 MPa条件下钢表面氧化物的标准生成Gibbs自由能
图14  9Cr-ODS钢在静态、动态高温高压水中腐蚀过程的示意图
[1] Shi W, Zeng Q, Li W, et al. Primary analysis of radiation damage on first wall and the outboard blanket on equatorial plane for CFETR [J]. Nucl. Technol., 2016, 39: 120602
[1] 石 巍, 曾 勤, 李 卫 等. CFETR第一壁及赤道面外包层中子辐照损伤初步分析 [J]. 核技术, 2016, 39: 120602
[2] Wan Y X, Li J G, Liu Y, et al. Overview of the present progress and activities on the CFETR [J]. Nucl. Fusion, 2017, 57: 102009
[3] Halvarsson M, Tang J E, Asteman H, et al. Microstructural investigation of the breakdown of the protective oxide scale on a 304 steel in the presence of oxygen and water vapour at 600 oC [J]. Corros. Sci., 2006, 48: 2014
[4] Laverde D, Gómez-acebo T, Castro F. Continuous and cyclic oxidation of T91 ferritic steel under steam [J]. Corros. Sci., 2004, 46: 613
[5] Lee J H, Kasada R, Kimura A, et al. Influence of alloy composition and temperature on corrosion behavior of ODS ferritic steels [J]. J. Nucl. Mater., 2011, 417: 1225
[6] Pandey C, Mahapatra M M, Kumar P, et al. Some studies on P91 steel and their weldments [J]. J. Alloys Compd., 2018, 743: 332
[7] Yoshizawa M, Igarashi M, Moriguchi K, et al. Effect of precipitates on long-term creep deformation properties of P92 and P122 type advanced ferritic steels for USC power plants [J]. Mater. Sci. Eng., 2009, A510-511: 162
[8] Ukai S, Ohtsuka S, Kaito T, et al. High-temperature strength characterization of advanced 9Cr-ODS ferritic steels [J]. Mater. Sci. Eng., 2009, A510-511: 115
[9] Wang Q T, Li Y F, Zhang J R, et al. Low cycle fatigue behavior of 9Cr-ODS Steel as a fusion blanket structural material at room temperature [J]. Acta Metall. Sin., 2025, 61: 323
doi: 10.11900/0412.1961.2023.00034
[9] 王旗涛, 李艳芬, 张家榕 等. 聚变增殖包层用低活化9Cr-ODS钢的室温低周疲劳行为 [J]. 金属学报, 2025, 61: 323
doi: 10.11900/0412.1961.2023.00034
[10] Rui X, Li Y F, Zhang J R, et al. Microstructure and mechanical properties of a novel designed 9Cr-ODS steel synergically strengthened by nano precipitates [J]. Acta Metall. Sin., 2023, 59: 1590
doi: 10.11900/0412.1961.2021.00534
[10] 芮 祥, 李艳芬, 张家榕 等. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能 [J]. 金属学报, 2023, 59: 1590
[11] Zheng P F, Li Y F, Zhang J R, et al. On the thermal stability of a 9Cr-ODS steel aged at 700 oC up to 10000 h—Mechanical properties and microstructure [J]. Mater. Sci. Eng., 2020, A783: 139292
[12] Li Y F, Abe H, Li F, et al. Grain structural characterization of 9Cr-ODS steel aged at 973 K up to 10,000 h by electron backscatter diffraction [J]. J. Nucl. Mater., 2014, 455: 568
[13] Zhang J R, Li Y F, Bao F Y, et al. Study on the formation mechanism of Y-Ti-O oxides during mechanical milling and annealing treatment [J]. Adv. Powder Technol., 2021, 32: 582
[14] Was G S, Ampornrat P, Gupta G, et al. Corrosion and stress corrosion cracking in supercritical water [J]. J. Nucl. Mater., 2007, 371: 176
[15] Zhou X S, Liu Y C, Yu L M, et al. Microstructure characteristic and mechanical property of transformable 9Cr-ODS steel fabricated by spark plasma sintering [J]. Mater. Des., 2017, 132: 158
[16] Hosemann P, Thau H T, Johnson A L, et al. Corrosion of ODS steels in lead-bismuth eutectic [J]. J. Nucl. Mater., 2008, 373: 246
[17] Bao F Y, Li Y F, Wang G Q, et al. Corrosion behaviors and mechanisms of ODS steel exposed to static Pb-Bi eutectic at 600 and 700 oC [J]. Acta Metall. Sin., 2020, 56: 1366
[17] 包飞洋, 李艳芬, 王光全 等. ODS钢在600和700 ℃静态Pb-Bi共晶中的腐蚀行为及机理 [J]. 金属学报, 2020, 56: 1366
doi: 10.11900/0412.1961.2020.00035
[18] Li Y F, Abe H, Nagasaka T, et al. Corrosion behavior of 9Cr-ODS steel in stagnant liquid lithium and lead-lithium at 873 K [J]. J. Nucl. Mater., 2013, 443: 200
[19] Wang Y, Shen Z, Jia H D, et al. The effect of surface grinding and Si addition on the corrosion of Fe-12Cr ODS steels in supercritical CO2 [J]. Corros. Sci., 2023, 224: 111533
[20] Lipkina K, Hallatt D, Geiger E, et al. A study of the oxidation behaviour of FeCrAl-ODS in air and steam environments up to 1400 oC [J]. J. Nucl. Mater., 2020, 541: 152305
[21] Zhao H Z, Liu T, Bai Z L, et al. Corrosion behavior of 14Cr ODS steel in supercritical water: The influence of substituting Y2O3 with Y2Ti2O7 nanoparticles [J]. Corros. Sci., 2020, 163: 108272
[22] Qu Z, Meng C Y, Huang J C, et al. Mechanistic study of incipient corrosion for nuclear grade lean-Cr FeCrAl alloys in a simulated PWR environment [J]. Mater. Des., 2023, 230: 111948
[23] Cong S, Gao Y, Liu Z, et al. Role of Al addition and Y2O3 on the intergranular corrosion behavior of AFA-ODS steel in the supercritical water [J]. Mater. Des., 2022, 224: 111386
[24] Bai Z L, Wang L B, Wang C X, et al. Corrosion behavior of ferritic ODS steel prepared by adding YH2 nanoparticles in supercritical water at 600 oC [J]. Prog. Nat. Sci.: Mater. Int., 2018, 28: 505
[25] Xu S, Long F, Persaud S Y, et al. Oxidation behavior of 9Cr-4.5Al ODS steel in 600 oC supercritical water and the effect of pre-oxidation [J]. Corros. Sci., 2020, 165: 108380
[26] Tan L, Yang Y, Allen T R. Oxidation behavior of iron-based alloy HCM12A exposed in supercritical water [J]. Corros. Sci., 2006, 48: 3123
[27] Kanai A, Kasada R, Nakajima M, et al. Corrosion behavior of F82H exposed to high temperature pressurized water with a rotating apparatus [J]. J. Nucl. Mater., 2014, 455: 431
[28] Zhang J R, Li Y F, Wang G Q, et al. Effects of heat treatment on microstructure and mechanical properties of a bimodal grain ultra-low carbon 9Cr-ODS steel [J]. Acta Metall. Sin., 2022, 58: 623
doi: 10.11900/0412.1961.2020.00507
[28] 张家榕, 李艳芬, 王光全 等. 热处理对一种双峰晶粒结构超低碳9Cr-ODS钢显微组织与力学性能的影响 [J]. 金属学报, 2022, 58: 623
doi: 10.11900/0412.1961.2020.00507
[29] Huang L X, Hu X, Yan W, et al. Effect of heat treatment processes on microstructure and mechanical properties of ton-scale china low activation martensitic steel [J]. At. Energy Sci. Technol., 2013, 47(suppl.2): 412
[29] 黄礼新, 胡 雪, 严 伟 等. 热处理工艺对吨级CLAM钢组织及力学性能的影响 [J]. 原子能科学技术, 2013, 47(增刊2): 412
doi: 10.7538/yzk.2013.47.S1.0412
[30] Zhang N Q, Zhu Z L, Xu H, et al. Oxidation of ferritic and ferritic-martensitic steels in flowing and static supercritical water [J]. Corros. Sci., 2016, 103: 124
[31] Zhao Q, Qiao Z X, Dong J, et al. Oxidation behavior analysis of a ferritic ODS steel in supercritical Water [J]. Fusion Eng. Des., 2020, 161: 111991
[32] Hu H L, Zhou Z J, Liao L, et al. Corrosion behavior of a 14Cr-ODS steel in supercritical water [J]. J. Nucl. Mater., 2013, 437: 196
[33] Cabet C, Dalle F, Gaganidze E, et al. Ferritic-martensitic steels for fission and fusion applications [J]. J. Nucl. Mater., 2019, 523: 510
doi: 10.1016/j.jnucmat.2019.05.058
[34] Tan L, Ren X, Allen T R. Corrosion behavior of 9-12% Cr ferritic-martensitic steels in supercritical water [J]. Corros. Sci., 2010, 52: 1520
[35] Measurement Services Division of the National Institute of Standards and Technology (NIST) Material Measurement Laboratory (MML), NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20, Version 4.1, 2012 [DB/OL]
[36] Yamashita T, Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials [J]. Appl. Surf. Sci., 2008, 254: 2441
[37] Biesinger M C, Payne B P, Grosvenor A P, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni [J]. Appl. Surf. Sci., 2011, 257: 2717
[38] Qiang R, Leong A, Zhang J S, et al. Corrosion behavior of Fe-Cr-Si alloys in simulated PWR primary water environment [J]. J. Nucl. Mater., 2019, 526: 151735
[39] Wright I G, Dooley R B. A review of the oxidation behaviour of structural alloys in steam [J]. Int. Mater. Rev., 2010, 55: 129
[40] Chen Y, Sridharan K, Allen T. Corrosion behavior of ferritic-martensitic steel T91 in supercritical water [J]. Corros. Sci., 2006, 48: 2843
[41] Ren X, Sridharan K, Allen T R. Corrosion of ferritic-martensitic steel HT9 in supercritical water [J]. J. Nucl. Mater., 2006, 358: 227
[42] Wagner C. Beitrag zur theorie des anlaufvorgangs [J]. Z. Phys. Chem., 1933, 21B: 25
[43] Zhu Z L. Research on corrosion of Materials in power plant's superheater in supercritical water [D]. Beijing: North China Electric Power University (Beijing), 2017
[43] 朱忠亮. 电站过热器材料在超临界水中的腐蚀机理研究 [D]. 北京: 华北电力大学(北京), 2017
[44] Asteman H, Svensson J E, Johansson L G. Oxidation of 310 steel in H2O/O2 mixtures at 600 oC: The effect of water-vapour-enhanced chromium evaporation [J]. Corros. Sci., 2002, 44: 2635
[45] Lukaszewicz M, Simms N J, Dudziak T, et al. Effect of steam flow rate and sample orientation on steam oxidation of ferritic and austenitic steels at 650 and 700 oC [J]. Oxid. Met., 2013, 79: 473
[46] Wagner C. The distribution of cations in metal oxide and metal sulphide solid solutions formed during the oxidation of alloys [J]. Corros. Sci., 1969, 9: 91
[47] Tan L Z, Yang Y, Allen T R. Porosity prediction in supercritical water exposed ferritic/martensitic steel HCM12A [J]. Corros. Sci., 2006, 48: 4234
[48] Basu S N, Yurek G J. Effect of alloy grain size and silicon content on the oxidation of austenitic Fe-Cr-Ni-Mn-Si alloys in pure O2 [J]. Oxid. Met., 1991, 36: 281
[49] Trindade V, Christ H J, Krupp U. Grain-size effects on the high-temperature oxidation behaviour of chromium steels [J]. Oxid. Met., 2010, 73: 551
[50] Robertson J. The mechanism of high temperature aqueous corrosion of stainless steels [J]. Corros. Sci., 1991, 32: 443
[51] Wu W S, Ran G, Li Y P, et al. Early corrosion behaviour of irradiated FeCrAl alloy in a simulated pressurized water reactor environment [J]. Corros. Sci., 2020, 174: 108824
[52] Lister D H, Davidson R D, McAlpine E. The mechanism and kinetics of corrosion product release from stainless steel in lithiated high temperature water [J]. Corros. Sci., 1987, 27: 113
[1] 张晓晨, 李静, 李长记, 熊良银, 刘实. Zr ODS FeCrAl合金在550Pb-Bi熔液中的腐蚀行为[J]. 金属学报, 2025, 61(9): 1320-1334.
[2] 臧勃林, 杨延格, 曹京宜, 徐锋锋, 姚海华, 周正. 双非晶相铁基复合涂层的腐蚀与磨损行为[J]. 金属学报, 2025, 61(8): 1267-1275.
[3] 周志春, 刘仁慈, 张建达, 杨超, 崔玉友, 杨锐. γ-TiAl合金在700 ℃空气中的长时高温氧化行为和组织演变[J]. 金属学报, 2025, 61(8): 1217-1228.
[4] 李雪, 喻政, 解志文, 王金龙, 陈明辉, 王福会. 耐热钢及搪瓷涂层在600 ℃高温CO2 气氛中的腐蚀行为[J]. 金属学报, 2025, 61(8): 1245-1255.
[5] 龙飞, 刘瞿, 朱艺星, 周梦然, 陈高强, 史清宇. 搅拌摩擦加工改性Mg-5Zn合金的显微组织与耐腐蚀性能[J]. 金属学报, 2025, 61(7): 1071-1081.
[6] 谷少杰, 刘洋, 李彩霞, 胡上茂, 杜艳霞. 阴极保护条件对高压直流干扰下X80钢腐蚀行为的影响规律及作用机制[J]. 金属学报, 2025, 61(6): 917-928.
[7] 周一鸣, 韩勇军, 谢光, 郑伟, 肖炎彬, 潘阳, 张健. 一种镍基高温合金的高温HCl腐蚀行为[J]. 金属学报, 2025, 61(5): 770-782.
[8] 蔡正清, 尹大伟, 杨靓, 王文祥, 王飞龙, 温永清, 马明臻. Ag替换CuZr-Ti-Cu-Al非晶合金性能的影响[J]. 金属学报, 2025, 61(4): 572-582.
[9] 庞梦瑶, 巫瑞智, 马晓春, 靳思远, 于哲, Boris Krit. 热轧加工工艺对快速降解Mg-Li合金力学性能及腐蚀行为的影响[J]. 金属学报, 2025, 61(3): 509-520.
[10] 付辉, 孙勇, 邹国栋, 张帆, 杨许生, 张涛, 彭秋明. 高性能超高压镁合金研究进展[J]. 金属学报, 2025, 61(3): 475-487.
[11] 吴炀, 谢昂, 陈胜虎, 姜海昌, 戎利建. Nb奥氏体不锈钢中NbC的液态Pb-Bi共晶腐蚀行为及其对氧化层形成的影响[J]. 金属学报, 2025, 61(2): 287-296.
[12] 宋昱杉, 刘叡, 崔宇, 刘莉, 王福会. 静水压力和拉伸应力交互作用下Ni-Cr-Mo-V钢在3.5%NaCl溶液中的应力腐蚀行为[J]. 金属学报, 2025, 61(2): 309-322.
[13] 顾天真, 刘雨薇, 彭灿, 张鹏, 王振尧, 汪川, 马成, 曹宏玮. Zn-2.0Al-1.5Mg镀层在模拟海洋大气中的腐蚀行为[J]. 金属学报, 2025, 61(2): 278-286.
[14] 闫茂鑫, 李杰, 王哲超, 姚旭, 胡秉晨, 葛峰, 崔中雨, 王昕, 崔洪芝. 南极大气环境下Q460Q690 低合金钢的腐蚀行为[J]. 金属学报, 2025, 61(2): 297-308.
[15] 吕云蕾, 任延杰, 冯抗抗, 周梦妮, 王文, 陈荐, 牛焱. 四元Co-Ni-Cr-Al合金高温氧化模式及其转变机理[J]. 金属学报, 2024, 60(7): 947-956.