|
|
聚变用低活化9Cr-ODS钢在高温高压水中的腐蚀行为及机理 |
付海阳1,2, 张家榕1,3( ), 李尧志1,2, 王旗涛1,2, 李新乐1,2, 严伟1,3, 单以银1,3, 李艳芬1,3( ) |
1 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016 2 中国科学技术大学 材料科学与工程学院 沈阳 110016 3 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016 |
|
Corrosion Behavior and Mechanism of Low Activation 9Cr-ODS Steel in High Temperature and High Pressure Water Environment for the Application in Fusion Reactors |
FU Haiyang1,2, ZHANG Jiarong1,3( ), LI Yaozhi1,2, WANG Qitao1,2, LI Xinle1,2, YAN Wei1,3, SHAN Yiyin1,3, LI Yanfen1,3( ) |
1 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 3 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
付海阳, 张家榕, 李尧志, 王旗涛, 李新乐, 严伟, 单以银, 李艳芬. 聚变用低活化9Cr-ODS钢在高温高压水中的腐蚀行为及机理[J]. 金属学报, 2025, 61(9): 1305-1319.
Haiyang FU,
Jiarong ZHANG,
Yaozhi LI,
Qitao WANG,
Xinle LI,
Wei YAN,
Yiyin SHAN,
Yanfen LI.
Corrosion Behavior and Mechanism of Low Activation 9Cr-ODS Steel in High Temperature and High Pressure Water Environment for the Application in Fusion Reactors[J]. Acta Metall Sin, 2025, 61(9): 1305-1319.
[1] |
Shi W, Zeng Q, Li W, et al. Primary analysis of radiation damage on first wall and the outboard blanket on equatorial plane for CFETR [J]. Nucl. Technol., 2016, 39: 120602
|
[1] |
石 巍, 曾 勤, 李 卫 等. CFETR第一壁及赤道面外包层中子辐照损伤初步分析 [J]. 核技术, 2016, 39: 120602
|
[2] |
Wan Y X, Li J G, Liu Y, et al. Overview of the present progress and activities on the CFETR [J]. Nucl. Fusion, 2017, 57: 102009
|
[3] |
Halvarsson M, Tang J E, Asteman H, et al. Microstructural investigation of the breakdown of the protective oxide scale on a 304 steel in the presence of oxygen and water vapour at 600 oC [J]. Corros. Sci., 2006, 48: 2014
|
[4] |
Laverde D, Gómez-acebo T, Castro F. Continuous and cyclic oxidation of T91 ferritic steel under steam [J]. Corros. Sci., 2004, 46: 613
|
[5] |
Lee J H, Kasada R, Kimura A, et al. Influence of alloy composition and temperature on corrosion behavior of ODS ferritic steels [J]. J. Nucl. Mater., 2011, 417: 1225
|
[6] |
Pandey C, Mahapatra M M, Kumar P, et al. Some studies on P91 steel and their weldments [J]. J. Alloys Compd., 2018, 743: 332
|
[7] |
Yoshizawa M, Igarashi M, Moriguchi K, et al. Effect of precipitates on long-term creep deformation properties of P92 and P122 type advanced ferritic steels for USC power plants [J]. Mater. Sci. Eng., 2009, A510-511: 162
|
[8] |
Ukai S, Ohtsuka S, Kaito T, et al. High-temperature strength characterization of advanced 9Cr-ODS ferritic steels [J]. Mater. Sci. Eng., 2009, A510-511: 115
|
[9] |
Wang Q T, Li Y F, Zhang J R, et al. Low cycle fatigue behavior of 9Cr-ODS Steel as a fusion blanket structural material at room temperature [J]. Acta Metall. Sin., 2025, 61: 323
doi: 10.11900/0412.1961.2023.00034
|
[9] |
王旗涛, 李艳芬, 张家榕 等. 聚变增殖包层用低活化9Cr-ODS钢的室温低周疲劳行为 [J]. 金属学报, 2025, 61: 323
doi: 10.11900/0412.1961.2023.00034
|
[10] |
Rui X, Li Y F, Zhang J R, et al. Microstructure and mechanical properties of a novel designed 9Cr-ODS steel synergically strengthened by nano precipitates [J]. Acta Metall. Sin., 2023, 59: 1590
doi: 10.11900/0412.1961.2021.00534
|
[10] |
芮 祥, 李艳芬, 张家榕 等. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能 [J]. 金属学报, 2023, 59: 1590
|
[11] |
Zheng P F, Li Y F, Zhang J R, et al. On the thermal stability of a 9Cr-ODS steel aged at 700 oC up to 10000 h—Mechanical properties and microstructure [J]. Mater. Sci. Eng., 2020, A783: 139292
|
[12] |
Li Y F, Abe H, Li F, et al. Grain structural characterization of 9Cr-ODS steel aged at 973 K up to 10,000 h by electron backscatter diffraction [J]. J. Nucl. Mater., 2014, 455: 568
|
[13] |
Zhang J R, Li Y F, Bao F Y, et al. Study on the formation mechanism of Y-Ti-O oxides during mechanical milling and annealing treatment [J]. Adv. Powder Technol., 2021, 32: 582
|
[14] |
Was G S, Ampornrat P, Gupta G, et al. Corrosion and stress corrosion cracking in supercritical water [J]. J. Nucl. Mater., 2007, 371: 176
|
[15] |
Zhou X S, Liu Y C, Yu L M, et al. Microstructure characteristic and mechanical property of transformable 9Cr-ODS steel fabricated by spark plasma sintering [J]. Mater. Des., 2017, 132: 158
|
[16] |
Hosemann P, Thau H T, Johnson A L, et al. Corrosion of ODS steels in lead-bismuth eutectic [J]. J. Nucl. Mater., 2008, 373: 246
|
[17] |
Bao F Y, Li Y F, Wang G Q, et al. Corrosion behaviors and mechanisms of ODS steel exposed to static Pb-Bi eutectic at 600 and 700 oC [J]. Acta Metall. Sin., 2020, 56: 1366
|
[17] |
包飞洋, 李艳芬, 王光全 等. ODS钢在600和700 ℃静态Pb-Bi共晶中的腐蚀行为及机理 [J]. 金属学报, 2020, 56: 1366
doi: 10.11900/0412.1961.2020.00035
|
[18] |
Li Y F, Abe H, Nagasaka T, et al. Corrosion behavior of 9Cr-ODS steel in stagnant liquid lithium and lead-lithium at 873 K [J]. J. Nucl. Mater., 2013, 443: 200
|
[19] |
Wang Y, Shen Z, Jia H D, et al. The effect of surface grinding and Si addition on the corrosion of Fe-12Cr ODS steels in supercritical CO2 [J]. Corros. Sci., 2023, 224: 111533
|
[20] |
Lipkina K, Hallatt D, Geiger E, et al. A study of the oxidation behaviour of FeCrAl-ODS in air and steam environments up to 1400 oC [J]. J. Nucl. Mater., 2020, 541: 152305
|
[21] |
Zhao H Z, Liu T, Bai Z L, et al. Corrosion behavior of 14Cr ODS steel in supercritical water: The influence of substituting Y2O3 with Y2Ti2O7 nanoparticles [J]. Corros. Sci., 2020, 163: 108272
|
[22] |
Qu Z, Meng C Y, Huang J C, et al. Mechanistic study of incipient corrosion for nuclear grade lean-Cr FeCrAl alloys in a simulated PWR environment [J]. Mater. Des., 2023, 230: 111948
|
[23] |
Cong S, Gao Y, Liu Z, et al. Role of Al addition and Y2O3 on the intergranular corrosion behavior of AFA-ODS steel in the supercritical water [J]. Mater. Des., 2022, 224: 111386
|
[24] |
Bai Z L, Wang L B, Wang C X, et al. Corrosion behavior of ferritic ODS steel prepared by adding YH2 nanoparticles in supercritical water at 600 oC [J]. Prog. Nat. Sci.: Mater. Int., 2018, 28: 505
|
[25] |
Xu S, Long F, Persaud S Y, et al. Oxidation behavior of 9Cr-4.5Al ODS steel in 600 oC supercritical water and the effect of pre-oxidation [J]. Corros. Sci., 2020, 165: 108380
|
[26] |
Tan L, Yang Y, Allen T R. Oxidation behavior of iron-based alloy HCM12A exposed in supercritical water [J]. Corros. Sci., 2006, 48: 3123
|
[27] |
Kanai A, Kasada R, Nakajima M, et al. Corrosion behavior of F82H exposed to high temperature pressurized water with a rotating apparatus [J]. J. Nucl. Mater., 2014, 455: 431
|
[28] |
Zhang J R, Li Y F, Wang G Q, et al. Effects of heat treatment on microstructure and mechanical properties of a bimodal grain ultra-low carbon 9Cr-ODS steel [J]. Acta Metall. Sin., 2022, 58: 623
doi: 10.11900/0412.1961.2020.00507
|
[28] |
张家榕, 李艳芬, 王光全 等. 热处理对一种双峰晶粒结构超低碳9Cr-ODS钢显微组织与力学性能的影响 [J]. 金属学报, 2022, 58: 623
doi: 10.11900/0412.1961.2020.00507
|
[29] |
Huang L X, Hu X, Yan W, et al. Effect of heat treatment processes on microstructure and mechanical properties of ton-scale china low activation martensitic steel [J]. At. Energy Sci. Technol., 2013, 47(suppl.2): 412
|
[29] |
黄礼新, 胡 雪, 严 伟 等. 热处理工艺对吨级CLAM钢组织及力学性能的影响 [J]. 原子能科学技术, 2013, 47(增刊2): 412
doi: 10.7538/yzk.2013.47.S1.0412
|
[30] |
Zhang N Q, Zhu Z L, Xu H, et al. Oxidation of ferritic and ferritic-martensitic steels in flowing and static supercritical water [J]. Corros. Sci., 2016, 103: 124
|
[31] |
Zhao Q, Qiao Z X, Dong J, et al. Oxidation behavior analysis of a ferritic ODS steel in supercritical Water [J]. Fusion Eng. Des., 2020, 161: 111991
|
[32] |
Hu H L, Zhou Z J, Liao L, et al. Corrosion behavior of a 14Cr-ODS steel in supercritical water [J]. J. Nucl. Mater., 2013, 437: 196
|
[33] |
Cabet C, Dalle F, Gaganidze E, et al. Ferritic-martensitic steels for fission and fusion applications [J]. J. Nucl. Mater., 2019, 523: 510
doi: 10.1016/j.jnucmat.2019.05.058
|
[34] |
Tan L, Ren X, Allen T R. Corrosion behavior of 9-12% Cr ferritic-martensitic steels in supercritical water [J]. Corros. Sci., 2010, 52: 1520
|
[35] |
Measurement Services Division of the National Institute of Standards and Technology (NIST) Material Measurement Laboratory (MML), NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20, Version 4.1, 2012 [DB/OL]
|
[36] |
Yamashita T, Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials [J]. Appl. Surf. Sci., 2008, 254: 2441
|
[37] |
Biesinger M C, Payne B P, Grosvenor A P, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni [J]. Appl. Surf. Sci., 2011, 257: 2717
|
[38] |
Qiang R, Leong A, Zhang J S, et al. Corrosion behavior of Fe-Cr-Si alloys in simulated PWR primary water environment [J]. J. Nucl. Mater., 2019, 526: 151735
|
[39] |
Wright I G, Dooley R B. A review of the oxidation behaviour of structural alloys in steam [J]. Int. Mater. Rev., 2010, 55: 129
|
[40] |
Chen Y, Sridharan K, Allen T. Corrosion behavior of ferritic-martensitic steel T91 in supercritical water [J]. Corros. Sci., 2006, 48: 2843
|
[41] |
Ren X, Sridharan K, Allen T R. Corrosion of ferritic-martensitic steel HT9 in supercritical water [J]. J. Nucl. Mater., 2006, 358: 227
|
[42] |
Wagner C. Beitrag zur theorie des anlaufvorgangs [J]. Z. Phys. Chem., 1933, 21B: 25
|
[43] |
Zhu Z L. Research on corrosion of Materials in power plant's superheater in supercritical water [D]. Beijing: North China Electric Power University (Beijing), 2017
|
[43] |
朱忠亮. 电站过热器材料在超临界水中的腐蚀机理研究 [D]. 北京: 华北电力大学(北京), 2017
|
[44] |
Asteman H, Svensson J E, Johansson L G. Oxidation of 310 steel in H2O/O2 mixtures at 600 oC: The effect of water-vapour-enhanced chromium evaporation [J]. Corros. Sci., 2002, 44: 2635
|
[45] |
Lukaszewicz M, Simms N J, Dudziak T, et al. Effect of steam flow rate and sample orientation on steam oxidation of ferritic and austenitic steels at 650 and 700 oC [J]. Oxid. Met., 2013, 79: 473
|
[46] |
Wagner C. The distribution of cations in metal oxide and metal sulphide solid solutions formed during the oxidation of alloys [J]. Corros. Sci., 1969, 9: 91
|
[47] |
Tan L Z, Yang Y, Allen T R. Porosity prediction in supercritical water exposed ferritic/martensitic steel HCM12A [J]. Corros. Sci., 2006, 48: 4234
|
[48] |
Basu S N, Yurek G J. Effect of alloy grain size and silicon content on the oxidation of austenitic Fe-Cr-Ni-Mn-Si alloys in pure O2 [J]. Oxid. Met., 1991, 36: 281
|
[49] |
Trindade V, Christ H J, Krupp U. Grain-size effects on the high-temperature oxidation behaviour of chromium steels [J]. Oxid. Met., 2010, 73: 551
|
[50] |
Robertson J. The mechanism of high temperature aqueous corrosion of stainless steels [J]. Corros. Sci., 1991, 32: 443
|
[51] |
Wu W S, Ran G, Li Y P, et al. Early corrosion behaviour of irradiated FeCrAl alloy in a simulated pressurized water reactor environment [J]. Corros. Sci., 2020, 174: 108824
|
[52] |
Lister D H, Davidson R D, McAlpine E. The mechanism and kinetics of corrosion product release from stainless steel in lithiated high temperature water [J]. Corros. Sci., 1987, 27: 113
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|