Please wait a minute...
金属学报  2025, Vol. 61 Issue (9): 1403-1412    DOI: 10.11900/0412.1961.2023.00463
  研究论文 本期目录 | 过刊浏览 |
激光熔覆Si增强MoNiCr合金涂层及其高温摩擦学性能
尤世泉1,2,3, 崔功军1,2,3(), 杨荣乾1,2,3, 刘宇嵩1,2,3, 冯小刚1,2,3, 寇子明1,2,3
1 太原理工大学 机械工程学院 太原 030024
2 太原理工大学 山西省矿山流体控制工程实验室 太原 030024
3 太原理工大学 矿山流体控制国家地方联合工程实验室 太原 030024
High-Temperature Tribological Performance of Laser Clad MoNiCr Alloy Coatings Reinforced by Si
YOU Shiquan1,2,3, CUI Gongjun1,2,3(), YANG Rongqian1,2,3, LIU Yusong1,2,3, FENG Xiaogang1,2,3, KOU Ziming1,2,3
1 College of Mechanical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2 Shanxi Mine Fluid Control Engineering Laboratory, Taiyuan University of Technology, Taiyuan 030024, China
3 National-Local Joint Engineering Laboratory of Mine Fluid Control, Taiyuan University of Technology, Taiyuan 030024, China
引用本文:

尤世泉, 崔功军, 杨荣乾, 刘宇嵩, 冯小刚, 寇子明. 激光熔覆Si增强MoNiCr合金涂层及其高温摩擦学性能[J]. 金属学报, 2025, 61(9): 1403-1412.
Shiquan YOU, Gongjun CUI, Rongqian YANG, Yusong LIU, Xiaogang FENG, Ziming KOU. High-Temperature Tribological Performance of Laser Clad MoNiCr Alloy Coatings Reinforced by Si[J]. Acta Metall Sin, 2025, 61(9): 1403-1412.

全文: PDF(2960 KB)   HTML
摘要: 

为改善钼基涂层作为热端部件高温防护涂层的耐磨损性能,采用激光熔覆技术在Inconel 718合金表面原位制备了MoNiCrSi涂层,并系统研究了Si对钼合金涂层的微观组织和高温摩擦学性能的影响。在室温至1000 ℃的大气环境中,采用Si3N4作为摩擦对偶及球-盘式高温摩擦磨损试验机对涂层及基底材料的高温摩擦学性能进行测试。结果表明,Si与Mo、Ni、Cr发生反应生成了α-Mo、Mo0.3Ni0.24Si0.76、Mo5Si3和CrSi2相。MoNiCrSi涂层的Vickers硬度相比MoNiCr涂层和基底材料显著升高,Si元素表现出明显的固溶强化和弥散强化作用。随温度的升高,涂层的摩擦系数逐渐减小,磨损率呈现出先降低后增加的趋势。MoNiCrSi涂层相比MoNiCr涂层和基底材料表现出更优异的高温耐磨损性能,Si明显改善了涂层的高温耐磨自润滑性能。这主要归因于涂层高的硬度和SiO2、MoO3、Mo4O11、NiMoO4等固体润滑相以及高温润滑层的协同作用。特别是在600 ℃下,MoNiCrSi合金涂层的磨损率降低至5.57 × 10-6 mm3/(N·m),比MoNiCr涂层低了1个数量级。在不同温度下,钼合金涂层表现出了不同的磨损机理。

关键词 钼基涂层激光熔覆高温摩擦耐磨性    
Abstract

With increasing power of aero-engines, the effects of temperature and load on hot-end parts such as bearings and bushings are becoming more apparent, leading to the wear failure of hot-end parts. Therefore, increasing the wear resistance of hot-end parts is very important. Laser-clad coatings can considerably improve the mechanical properties and wear resistance of these parts, without altering the properties of the substrate. The use of such coatings provides a new approach to improve the high-temperature wear resistance of hot-end parts. Mo alloys with high melting point, excellent high-temperature strength, and low thermal expansion coefficient have been widely used as high-temperature materials. Therefore, these coatings fabricated using the laser cladding technology have good prospects for application as wear-resistant coatings on the surface of hot-end parts at elevated temperatures. To further enhance the wear resistance of the Mo alloy coatings for application as high-temperature protective coatings for hot-end parts, MoNiCrSi coatings were in situ prepared on the surface of the Inconel 718 alloy via laser cladding. The effects of Si on the microstructure and high-temperature tribological performance of the Mo alloy coatings were systematically studied. The high-temperature wear tests of the Mo alloy coatings and Inconel 718 alloy were performed using a ball-on-disk tribo-tester against Si3N4 balls in an environment where the temperature varied from room temperature to 1000 oC. The results indicate that Si reacts with Mo, Ni, and Cr to form α-Mo, Mo0.3Ni0.24Si0.76, Mo5Si3, and CrSi2 phases. Compared with the MoNiCr coating and substrate, the MoNiCrSi coating has higher microhardness. The introduction of Si causes solid solution strengthening and dispersion strengthening effects. The friction coefficients of coatings gradually decrease with increasing temperature. The wear rates firstly decrease and then increase with increasing temperature. Furthermore, with an increase in the temperature, the substrate material exhibits the highest wear rates, reaching a maximum value of 3.41 × 10-4 mm3/(N·m) at room temperature (24 oC). However, the high-temperature wear resistance of the MoNiCrSi coating is the best than that of the MoNiCr coating or substrate, and the wear rates of the MoNiCrSi coating are in the order of magnitude of 10-6-10-5 mm3/(N·m) in the temperature range from room temperature to 1000 oC. This finding indicates that the introduction of Si drastically improves the high-temperature wear resistance and self-lubricating properties of the Mo alloy coating at elevated temperatures. This improvement is primarily attributed to the synergistic effects of the high hardness of the coatings and introduction of solid lubricants, such as SiO2, MoO3, Mo4O11, and NiMoO4, as well as an oxide lubricating layer on wear tracks. In particular, at 600 oC, the MoNiCrSi alloy coating has the lowest wear rate of 5.57 × 10-6 mm3/(N·m), which is one order of magnitude lower than that of the MoNiCr coating. The Mo alloy coatings exhibit various wear mechanisms at different temperatures. At room temperature, the main wear mechanisms are fatigue wear, abrasive wear and plastic deformation. At 600 oC, the oxidation wear, fatigue wear, and abrasive wear become the primary wear mechanisms. At 1000 oC, the dominant wear mechanism of the coatings is oxidative wear.

Key wordsMo matrix coating    laser cladding    high temperature    friction    wear resistance
收稿日期: 2023-11-28     
ZTFLH:  TH117  
基金资助:国家自然科学基金项目(51775365);国家自然科学基金项目(U1910212);山西省基础研究计划项目(202303021211163);山西省回国留学人员科研项目(2021-060)
通讯作者: 崔功军,cuigongjun@tyut.edu.cn,主要从事机械摩擦学及表面技术研究
Corresponding author: CUI Gongjun, professor, Tel: (0351)6018949, E-mail: cuigongjun@tyut.edu.cn
作者简介: 尤世泉,男,1999年生,硕士
CoatingMoNiCrSi
MoNiCr68.02570
MoNiCrSi66.12571.9
表1  钼合金涂层的化学组成 (mass fraction / %)
图1  MoNiCr和MoNiCrSi涂层的XRD谱
图2  MoNiCr和MoNiCrSi涂层横截面的SEM像
图3  MoNiCr和MoNiCrSi涂层横截面不同位置的背散射电子(BSE)像
RegionCSiCrNiMo
A2.76013.5439.8143.89
B1.7509.2123.8165.23
C2.561.2812.5340.2143.42
D1.601.299.5524.3663.20
表2  图3中标记区域的EDS结果 (mass fraction / %)
图4  MoNiCr和MoNiCrSi涂层截面的Vickers硬度分布
图5  载荷为10 N、滑动速率为0.25 m/s条件下Inconel 718合金基底与MoNiCr和MoNiCrSi涂层在不同温度下的实时摩擦系数曲线
图6  载荷为10 N、滑动速率为0.25 m/s条件下Inconel 718合金基底与MoNiCr和MoNiCrSi涂层的温度-摩擦系数曲线
图7  载荷为10 N、滑动速率为0.25 m/s条件下,Inconel 718合金基底及MoNiCr和MoNiCrSi涂层在不同温度条件下的磨损率
图8  载荷为10 N、滑动速率为0.25 m/s条件下Inconel 718合金基底与MoNiCr和MoNiCrSi涂层在不同温度下的磨损表面轮廓
图9  MoNiCr和MoNiCrSi涂层在1000 ℃时磨损表面的XRD谱
图10  室温下Inconel 718合金基底及MoNiCr和MoNiCrSi涂层磨损表面的SEM像
图11  600 ℃时Inconel 718合金基底及MoNiCr和MoNiCrSi涂层磨损表面的SEM像
图12  1000 ℃时Inconel 718合金基底及MoNiCr和MoNiCrSi涂层磨损表面的SEM像
[1] Gong S K, Liu Y, Geng L L, et al. Advances in the regulation and interfacial behavior of coatings/superalloys [J]. Acta Metall. Sin., 2023, 59: 1097
doi: 10.11900/0412.1961.2023.00257
[1] 宫声凯, 刘 原, 耿粒伦 等. 涂层/高温合金界面行为及调控研究进展 [J]. 金属学报, 2023, 59: 1097
doi: 10.11900/0412.1961.2023.00257
[2] Ren Y, Dong X Y, Sun H, et al. Oxide cleaning effect of in-flight CuNi droplet during atmospheric plasma spraying by B addition [J]. Acta Metall. Sin., 2022, 58(2): 206
doi: 10.11900/0412.1961.2021.00167
[2] 任 媛, 董昕远, 孙 浩 等. B清除大气等离子喷涂CuNi熔滴氧化物效应 [J]. 金属学报, 2022, 58(2): 206
doi: 10.11900/0412.1961.2021.00167
[3] Tong W H, Zhang X Y, Li W X, et al. Effect of laser process parameters on the microstructure and properties of TiC reinforced Co-based alloy laser cladding layer [J]. Acta Metall. Sin., 2020, 56: 1265
doi: 10.11900/0412.1961.2019.00438
[3] 童文辉, 张新元, 李为轩 等. 激光工艺参数对TiC增强钴基合金激光熔覆层组织及性能的影响 [J]. 金属学报, 2020, 56: 1265
doi: 10.11900/0412.1961.2019.00438
[4] Deng X K, Zhang G J, Wang T, et al. Study on microstructure and wear properties of molybdenum coating fabricated using plasma transferred arc process [J]. China Molybdenum Ind., 2018, 42(1): 43
[4] 邓新科, 张国君, 王 涛 等. 等离子弧喷焊Mo涂层微观组织结构及摩擦磨损性能研究 [J]. 中国钼业, 2018, 42(1): 43
[5] Adarsha H, Ramesh C S, Nair N, et al. Investigations on the abrasive wear behaviour of molybdenum coating on SS304 and A36 using HVOF technique [J]. Mater. Today: Proc., 2018, 5: 25667
[6] Zhou Y J, Li Y, Tan N, et al. Preparation process and mechanical properties of laser cladding gradient molybdenum coating on copper alloy [J]. Surf. Coat. Technol., 2023, 470: 129888
[7] Yan T, Liu G M, Zhu S, et al. Properties of MoWCu alloy coating prepared by supersonic plasma spraying [J]. Electroplat. Finish., 2018, 37(2): 93
[7] 闫 涛, 刘贵民, 朱 硕 等. 超音速等离子喷涂MoWCu合金涂层的性能 [J]. 电镀与涂饰, 2018, 37(2): 93
[8] Padgurskas J, Agafii V, Mikhailov V, et al. Tribological properties of combined molybdenum coatings formed by electric-spark alloying on stainless steel [J]. J. Frict. Wear, 2016, 37: 448
[9] Zhang H, Pan Y J, Zhang Y, et al. Effect of laser energy density on microstructure, wear resistance, and fracture toughness of laser cladded Mo2FeB2 coating [J]. Ceram. Int., 2022, 48: 28163
[10] Tailor S, Modi A, Modi S C. High-performance molybdenum coating by wire-HVOF thermal spray process [J]. J. Therm. Spray Technol., 2018, 27: 757
[11] Wang H, Zhao L, Peng Y, et al. Microstructure and mechanical properties of TiB2 reinforced TiAl-based alloy coatings prepared by laser melting deposition [J]. Acta Metall. Sin., 2023, 59: 226
[11] 王 虎, 赵 琳, 彭 云 等. 激光熔化沉积TiB2增强TiAl基合金涂层的组织及力学性能 [J]. 金属学报, 2023, 59: 226
[12] Liu C K, Ju H B, Yu L H, et al. Tribological properties of Mo2N films at elevated temperature [J]. Coatings, 2019, 9: 734
[13] Xu X, Sun J F, Su F H, et al. Microstructure and tribological performance of adaptive MoN-Ag nanocomposite coatings with various Ag contents [J]. Wear, 2022, 488-489: 204170
[14] Cui G J, Feng X G, Han W P, et al. Microstructure and high temperature wear behavior of in-situ synthesized carbides reinforced Mo-based coating by laser cladding [J]. Surf. Coat. Technol., 2023, 467: 129713
[15] Ding Z C, Fang Z Y, Wang G Y, et al. Microstructure and properties of Mo-Si-B-Y2O3 composite coating on nickel-based alloy by laser cladding [J]. Opt. Laser Technol., 2023, 164: 109473
[16] Xu Y Z, Xie M L, Li Y T, et al. The effect of Si content on the structure and tribological performance of MoS2/Si coatings [J]. Surf. Coat. Technol., 2020, 403: 126362
[17] Sturm D, Heilmaier M, Schneibel J H, et al. The influence of silicon on the strength and fracture toughness of molybdenum [J]. Mater. Sci. Eng., 2007, A463: 107
[18] Su W N, Cui X F, Yang Y Y, et al. Effect of Si content on microstructure and tribological properties of Ti5Si3/TiC reinforced NiTi laser cladding coatings [J]. Surf. Coat. Technol., 2021, 418: 127281
[19] Anton R, Hüning S, Laska N, et al. Graded PVD Mo-Si interlayer between Si coating and Mo-Si-B alloys: Investigation of oxidation behaviour [J]. Corros. Sci., 2021, 192: 109843
[20] Anton R, Hüning S, Laska N, et al. Interface reactions of magnetron sputtered Si-based dual layer coating systems as oxidation protection for Mo-Si-Ti alloys [J]. Surf. Coat. Technol., 2022, 444: 128620
[21] Zhang Y Y, Yu L H, Fu T, et al. Microstructure and oxidation resistance of Si-MoSi2 ceramic coating on TZM (Mo-0.5Ti-0.1Zr-0.02C) alloy at 1500 oC [J]. Surf. Coat. Technol., 2022, 431: 128037
[22] Liu J, Zhang J, Liu P C, et al. Microstructure and wear behaviour of laser-cladded γ-Niss/Mo2Ni3Si coating [J]. Surf. Eng., 2020, 36: 1270
[23] Liu Y, Li Y, Kou H N, et al. Microstructural and hardness investigation of a multiphase Mo-Si-B alloy processed by laser surface remelting [J]. Surf. Coat. Technol., 2022, 450: 129012
[24] Lu S S, Zhou J S, Wang L Q, et al. Influence of MoSi2 on the microstructure and elevated-temperature wear properties of Inconel 718 coating fabricated by laser cladding [J]. Surf. Coat. Technol., 2021, 424: 127665
[25] Han W P, Cui G J, Cui H T, et al. Effect of molybdenum on the microstructure and high-temperature tribological properties of laser clad CoCrW coating [J]. Trans. Indian Inst. Met, 2022, 75: 3193
[26] Wang J Y, Cui X F, Jin G, et al. Effect of in-situ Ni interlayer on the microstructure and corrosion resistance of underwater wet 316L stainless steel laser cladding layer [J]. Surf. Coat. Technol., 2023, 458: 129341
[27] Lin X H, Zhang G J, Sun Y J, et al. The influence of silicon content on the microstructure and hardness of Mo-Si alloys [J]. China Molybdenum Ind., 2008, 32(6): 46
[27] 林小辉, 张国君, 孙院军 等. Si含量对Mo-Si合金显微组织和硬度的影响 [J]. 中国钼业, 2008, 32(6): 46
[28] Zhao W X, Zhou Z, Huang J, et al. Microstructure and frictional wear behavior of FeCrNiMo alloy layer fabricated by laser cladding [J]. Acta Metall. Sin., 2021, 57: 1291
doi: 10.11900/0412.1961.2020.00320
[28] 赵万新, 周 正, 黄 杰 等. FeCrNiMo激光熔覆层组织与摩擦磨损行为 [J]. 金属学报, 2021, 57: 1291
doi: 10.11900/0412.1961.2020.00320
[29] Liao L Y, Gao R, Yang Z H, et al. A study on the wear and corrosion resistance of high-entropy alloy treated with laser shock peening and PVD coating [J]. Surf. Coat. Technol., 2022, 437: 128281
[30] Xu L J, Wei S Z, Liu Q, et al. Microstructure and high-temperature frictional wear property of Mo-based composites reinforced by aluminum and lanthanum oxides [J]. Tribol. Trans., 2013, 56: 833
[31] Yang T, Wu J B, Huang M, et al. Synthesis of a novel MoSS + Mo5SiB2 + Mo5Si3 based Mo-Si-B alloy and its enhanced fracture toughness [J]. Vacuum, 2022, 203: 111278
[32] Cheng S S. Design and tribological properties of high-temperature wear resistant CoCrMo matrix composites reinforced by nano-SiC [D]. Taiyuan: Taiyuan University of Technology, 2022
[32] 程书帅. SiC(纳米)/CoCrMo高温抗磨复合材料的设计及摩擦学性能研究 [D]. 太原: 太原理工大学, 2022
[33] Pei X H, Du Y, Wang H M, et al. Investigation of high temperature tribological performance of TiZrV0.5Nb0.5 refractory high-entropy alloy optimized by Si microalloying [J]. Tribol. Int., 2022, 176: 107885
[34] Guo C, Zhou J S, Chen J M, et al. High temperature wear resistance of laser cladding NiCrBSi and NiCrBSi/WC-Ni composite coatings [J]. Wear, 2011, 270: 492
[35] Liu J, Chen Y, Zhang J. Oxidation behavior of Ni-Mo-Si alloy coatings fabricated on carbon steel by laser cladding [J]. Surf. Coat. Technol., 2019, 375: 903
[36] Singh G, Kaur M, Upadhyaya R. Wear and friction behavior of NiCrBSi coatings at elevated temperatures [J]. J. Therm. Spray Technol., 2019, 28: 1081
[37] Yang X, Zou Y H, Huang Q Z, et al. Analysis on the oxidation behavior of Mo5Si3-MoSi2/SiC multi-coating at high temperature [J]. Acta Mater. Compos. Sin., 2009, 26(4): 119
[37] 杨 鑫, 邹艳红, 黄启忠 等. Mo5Si3-MoSi2/SiC复合涂层的高温抗氧化行为分析 [J]. 复合材料学报, 2009, 26(4): 119
[38] Rosenkranz A, Costa H L, Baykara M Z, et al. Synergetic effects of surface texturing and solid lubricants to tailor friction and wear—A review [J]. Tribol. Int., 2021, 155: 106792
[39] Liang J, Liu X B, Ke J, et al. Preparation and high temperature oxidation resistance of laser deposited Ti5Si3/MoSi2/Mo5Si3 reinforced α-Ti/NiTi composite coatings [J]. Surf. Coat. Technol., 2019, 372: 56
[1] 王洪瑛, 姚志浩, 李大禹, 郭婧, 姚凯俊, 董建新. γ' 相含量粉末及变形高温合金组织和力学性能的异同性[J]. 金属学报, 2025, 61(9): 1364-1374.
[2] 吴志勇, 邵徽凡, 蔡长春, 曾敏, 王振军, 王艳丽, 陈雷, 熊博文. 斜纹碳布缝合织物结构增强铝基复合材料的高温拉伸及断裂行为[J]. 金属学报, 2025, 61(9): 1387-1402.
[3] 付海阳, 张家榕, 李尧志, 王旗涛, 李新乐, 严伟, 单以银, 李艳芬. 聚变用低活化9Cr-ODS钢在高温高压水中的腐蚀行为及机理[J]. 金属学报, 2025, 61(9): 1305-1319.
[4] 臧勃林, 杨延格, 曹京宜, 徐锋锋, 姚海华, 周正. 双非晶相铁基复合涂层的腐蚀与磨损行为[J]. 金属学报, 2025, 61(8): 1267-1275.
[5] 谢信亮, 周丽萍, 余建波, 玄伟东, 陈超越, 王江, 任忠鸣. 横向弱磁场对镍基高温合金发散双晶竞争生长行为的影响[J]. 金属学报, 2025, 61(8): 1203-1216.
[6] 沈盟凯, 董太宁, 葛鸿浩, 石新升, 张群莉, 刘云峰, 姚建华. 316L激光粉末床熔覆IN718偏析带形成过程的模拟[J]. 金属学报, 2025, 61(8): 1193-1202.
[7] 杨帆, 裴世超, 罗新蕊, 陈宇翔, 李宁宇, 常永勤. 6061铝合金搅拌摩擦增材制造显微组织演变及力学性能[J]. 金属学报, 2025, 61(8): 1129-1140.
[8] 张国涛, 马镇, 李其龙, 李聪敏, 马涛, 马少波, 尹延国. 20CrMnTi齿轮钢表面FeS涂层的干摩擦性能[J]. 金属学报, 2025, 61(8): 1256-1266.
[9] 王飞翔, 陈忠奉, 尹晓宇, 熊良华, 谢红兰, 邓彪, 肖体乔. 基于X射线体视成像实现高温合金熔体凝固三维显微结构的原位观测[J]. 金属学报, 2025, 61(7): 1109-1118.
[10] 龙飞, 刘瞿, 朱艺星, 周梦然, 陈高强, 史清宇. 搅拌摩擦加工改性Mg-5Zn合金的显微组织与耐腐蚀性能[J]. 金属学报, 2025, 61(7): 1071-1081.
[11] 何家宝, 王亮, 张朝威, 邹明科, 孟杰, 王新广, 姜肃猛, 周亦胄, 孙晓峰. Al2O3 涂层对硅基陶瓷型芯与镍基单晶高温合金界面反应的影响[J]. 金属学报, 2025, 61(7): 1093-1108.
[12] 李永梅, 谭子昊, 王新广, 陶稀鹏, 杨彦红, 刘纪德, 刘金来, 李金国, 周亦胄, 孙晓峰. 一种低成本第三代单晶高温合金的高温氧化行为[J]. 金属学报, 2025, 61(7): 1049-1059.
[13] 李大禹, 姚志浩, 赵杰, 董建新, 郭婧, 赵宇. FGH4720Li粉末高温合金在近服役条件下的组织与力学性能演变规律[J]. 金属学报, 2025, 61(6): 826-836.
[14] 姜沐池, 宫继双, 杨兴远, 任德春, 蔡雨升, 李秉洋, 吉海宾, 雷家峰. Ti30Ni50Hf20 高温形状记忆合金的热变形行为[J]. 金属学报, 2025, 61(6): 857-865.
[15] 赵广迪, 李阳, 姚晓雨, 王亮, 李渭滨, 潘玉华, 李维娟, 王兆宇. BFe-Cr-B-C合金凝固行为、强韧性及耐磨性的影响[J]. 金属学报, 2025, 61(5): 699-716.