|
|
激光熔覆Si增强MoNiCr合金涂层及其高温摩擦学性能 |
尤世泉1,2,3, 崔功军1,2,3( ), 杨荣乾1,2,3, 刘宇嵩1,2,3, 冯小刚1,2,3, 寇子明1,2,3 |
1 太原理工大学 机械工程学院 太原 030024 2 太原理工大学 山西省矿山流体控制工程实验室 太原 030024 3 太原理工大学 矿山流体控制国家地方联合工程实验室 太原 030024 |
|
High-Temperature Tribological Performance of Laser Clad MoNiCr Alloy Coatings Reinforced by Si |
YOU Shiquan1,2,3, CUI Gongjun1,2,3( ), YANG Rongqian1,2,3, LIU Yusong1,2,3, FENG Xiaogang1,2,3, KOU Ziming1,2,3 |
1 College of Mechanical Engineering, Taiyuan University of Technology, Taiyuan 030024, China 2 Shanxi Mine Fluid Control Engineering Laboratory, Taiyuan University of Technology, Taiyuan 030024, China 3 National-Local Joint Engineering Laboratory of Mine Fluid Control, Taiyuan University of Technology, Taiyuan 030024, China |
引用本文:
尤世泉, 崔功军, 杨荣乾, 刘宇嵩, 冯小刚, 寇子明. 激光熔覆Si增强MoNiCr合金涂层及其高温摩擦学性能[J]. 金属学报, 2025, 61(9): 1403-1412.
Shiquan YOU,
Gongjun CUI,
Rongqian YANG,
Yusong LIU,
Xiaogang FENG,
Ziming KOU.
High-Temperature Tribological Performance of Laser Clad MoNiCr Alloy Coatings Reinforced by Si[J]. Acta Metall Sin, 2025, 61(9): 1403-1412.
[1] |
Gong S K, Liu Y, Geng L L, et al. Advances in the regulation and interfacial behavior of coatings/superalloys [J]. Acta Metall. Sin., 2023, 59: 1097
doi: 10.11900/0412.1961.2023.00257
|
[1] |
宫声凯, 刘 原, 耿粒伦 等. 涂层/高温合金界面行为及调控研究进展 [J]. 金属学报, 2023, 59: 1097
doi: 10.11900/0412.1961.2023.00257
|
[2] |
Ren Y, Dong X Y, Sun H, et al. Oxide cleaning effect of in-flight CuNi droplet during atmospheric plasma spraying by B addition [J]. Acta Metall. Sin., 2022, 58(2): 206
doi: 10.11900/0412.1961.2021.00167
|
[2] |
任 媛, 董昕远, 孙 浩 等. B清除大气等离子喷涂CuNi熔滴氧化物效应 [J]. 金属学报, 2022, 58(2): 206
doi: 10.11900/0412.1961.2021.00167
|
[3] |
Tong W H, Zhang X Y, Li W X, et al. Effect of laser process parameters on the microstructure and properties of TiC reinforced Co-based alloy laser cladding layer [J]. Acta Metall. Sin., 2020, 56: 1265
doi: 10.11900/0412.1961.2019.00438
|
[3] |
童文辉, 张新元, 李为轩 等. 激光工艺参数对TiC增强钴基合金激光熔覆层组织及性能的影响 [J]. 金属学报, 2020, 56: 1265
doi: 10.11900/0412.1961.2019.00438
|
[4] |
Deng X K, Zhang G J, Wang T, et al. Study on microstructure and wear properties of molybdenum coating fabricated using plasma transferred arc process [J]. China Molybdenum Ind., 2018, 42(1): 43
|
[4] |
邓新科, 张国君, 王 涛 等. 等离子弧喷焊Mo涂层微观组织结构及摩擦磨损性能研究 [J]. 中国钼业, 2018, 42(1): 43
|
[5] |
Adarsha H, Ramesh C S, Nair N, et al. Investigations on the abrasive wear behaviour of molybdenum coating on SS304 and A36 using HVOF technique [J]. Mater. Today: Proc., 2018, 5: 25667
|
[6] |
Zhou Y J, Li Y, Tan N, et al. Preparation process and mechanical properties of laser cladding gradient molybdenum coating on copper alloy [J]. Surf. Coat. Technol., 2023, 470: 129888
|
[7] |
Yan T, Liu G M, Zhu S, et al. Properties of MoWCu alloy coating prepared by supersonic plasma spraying [J]. Electroplat. Finish., 2018, 37(2): 93
|
[7] |
闫 涛, 刘贵民, 朱 硕 等. 超音速等离子喷涂MoWCu合金涂层的性能 [J]. 电镀与涂饰, 2018, 37(2): 93
|
[8] |
Padgurskas J, Agafii V, Mikhailov V, et al. Tribological properties of combined molybdenum coatings formed by electric-spark alloying on stainless steel [J]. J. Frict. Wear, 2016, 37: 448
|
[9] |
Zhang H, Pan Y J, Zhang Y, et al. Effect of laser energy density on microstructure, wear resistance, and fracture toughness of laser cladded Mo2FeB2 coating [J]. Ceram. Int., 2022, 48: 28163
|
[10] |
Tailor S, Modi A, Modi S C. High-performance molybdenum coating by wire-HVOF thermal spray process [J]. J. Therm. Spray Technol., 2018, 27: 757
|
[11] |
Wang H, Zhao L, Peng Y, et al. Microstructure and mechanical properties of TiB2 reinforced TiAl-based alloy coatings prepared by laser melting deposition [J]. Acta Metall. Sin., 2023, 59: 226
|
[11] |
王 虎, 赵 琳, 彭 云 等. 激光熔化沉积TiB2增强TiAl基合金涂层的组织及力学性能 [J]. 金属学报, 2023, 59: 226
|
[12] |
Liu C K, Ju H B, Yu L H, et al. Tribological properties of Mo2N films at elevated temperature [J]. Coatings, 2019, 9: 734
|
[13] |
Xu X, Sun J F, Su F H, et al. Microstructure and tribological performance of adaptive MoN-Ag nanocomposite coatings with various Ag contents [J]. Wear, 2022, 488-489: 204170
|
[14] |
Cui G J, Feng X G, Han W P, et al. Microstructure and high temperature wear behavior of in-situ synthesized carbides reinforced Mo-based coating by laser cladding [J]. Surf. Coat. Technol., 2023, 467: 129713
|
[15] |
Ding Z C, Fang Z Y, Wang G Y, et al. Microstructure and properties of Mo-Si-B-Y2O3 composite coating on nickel-based alloy by laser cladding [J]. Opt. Laser Technol., 2023, 164: 109473
|
[16] |
Xu Y Z, Xie M L, Li Y T, et al. The effect of Si content on the structure and tribological performance of MoS2/Si coatings [J]. Surf. Coat. Technol., 2020, 403: 126362
|
[17] |
Sturm D, Heilmaier M, Schneibel J H, et al. The influence of silicon on the strength and fracture toughness of molybdenum [J]. Mater. Sci. Eng., 2007, A463: 107
|
[18] |
Su W N, Cui X F, Yang Y Y, et al. Effect of Si content on microstructure and tribological properties of Ti5Si3/TiC reinforced NiTi laser cladding coatings [J]. Surf. Coat. Technol., 2021, 418: 127281
|
[19] |
Anton R, Hüning S, Laska N, et al. Graded PVD Mo-Si interlayer between Si coating and Mo-Si-B alloys: Investigation of oxidation behaviour [J]. Corros. Sci., 2021, 192: 109843
|
[20] |
Anton R, Hüning S, Laska N, et al. Interface reactions of magnetron sputtered Si-based dual layer coating systems as oxidation protection for Mo-Si-Ti alloys [J]. Surf. Coat. Technol., 2022, 444: 128620
|
[21] |
Zhang Y Y, Yu L H, Fu T, et al. Microstructure and oxidation resistance of Si-MoSi2 ceramic coating on TZM (Mo-0.5Ti-0.1Zr-0.02C) alloy at 1500 oC [J]. Surf. Coat. Technol., 2022, 431: 128037
|
[22] |
Liu J, Zhang J, Liu P C, et al. Microstructure and wear behaviour of laser-cladded γ-Niss/Mo2Ni3Si coating [J]. Surf. Eng., 2020, 36: 1270
|
[23] |
Liu Y, Li Y, Kou H N, et al. Microstructural and hardness investigation of a multiphase Mo-Si-B alloy processed by laser surface remelting [J]. Surf. Coat. Technol., 2022, 450: 129012
|
[24] |
Lu S S, Zhou J S, Wang L Q, et al. Influence of MoSi2 on the microstructure and elevated-temperature wear properties of Inconel 718 coating fabricated by laser cladding [J]. Surf. Coat. Technol., 2021, 424: 127665
|
[25] |
Han W P, Cui G J, Cui H T, et al. Effect of molybdenum on the microstructure and high-temperature tribological properties of laser clad CoCrW coating [J]. Trans. Indian Inst. Met, 2022, 75: 3193
|
[26] |
Wang J Y, Cui X F, Jin G, et al. Effect of in-situ Ni interlayer on the microstructure and corrosion resistance of underwater wet 316L stainless steel laser cladding layer [J]. Surf. Coat. Technol., 2023, 458: 129341
|
[27] |
Lin X H, Zhang G J, Sun Y J, et al. The influence of silicon content on the microstructure and hardness of Mo-Si alloys [J]. China Molybdenum Ind., 2008, 32(6): 46
|
[27] |
林小辉, 张国君, 孙院军 等. Si含量对Mo-Si合金显微组织和硬度的影响 [J]. 中国钼业, 2008, 32(6): 46
|
[28] |
Zhao W X, Zhou Z, Huang J, et al. Microstructure and frictional wear behavior of FeCrNiMo alloy layer fabricated by laser cladding [J]. Acta Metall. Sin., 2021, 57: 1291
doi: 10.11900/0412.1961.2020.00320
|
[28] |
赵万新, 周 正, 黄 杰 等. FeCrNiMo激光熔覆层组织与摩擦磨损行为 [J]. 金属学报, 2021, 57: 1291
doi: 10.11900/0412.1961.2020.00320
|
[29] |
Liao L Y, Gao R, Yang Z H, et al. A study on the wear and corrosion resistance of high-entropy alloy treated with laser shock peening and PVD coating [J]. Surf. Coat. Technol., 2022, 437: 128281
|
[30] |
Xu L J, Wei S Z, Liu Q, et al. Microstructure and high-temperature frictional wear property of Mo-based composites reinforced by aluminum and lanthanum oxides [J]. Tribol. Trans., 2013, 56: 833
|
[31] |
Yang T, Wu J B, Huang M, et al. Synthesis of a novel MoSS + Mo5SiB2 + Mo5Si3 based Mo-Si-B alloy and its enhanced fracture toughness [J]. Vacuum, 2022, 203: 111278
|
[32] |
Cheng S S. Design and tribological properties of high-temperature wear resistant CoCrMo matrix composites reinforced by nano-SiC [D]. Taiyuan: Taiyuan University of Technology, 2022
|
[32] |
程书帅. SiC(纳米)/CoCrMo高温抗磨复合材料的设计及摩擦学性能研究 [D]. 太原: 太原理工大学, 2022
|
[33] |
Pei X H, Du Y, Wang H M, et al. Investigation of high temperature tribological performance of TiZrV0.5Nb0.5 refractory high-entropy alloy optimized by Si microalloying [J]. Tribol. Int., 2022, 176: 107885
|
[34] |
Guo C, Zhou J S, Chen J M, et al. High temperature wear resistance of laser cladding NiCrBSi and NiCrBSi/WC-Ni composite coatings [J]. Wear, 2011, 270: 492
|
[35] |
Liu J, Chen Y, Zhang J. Oxidation behavior of Ni-Mo-Si alloy coatings fabricated on carbon steel by laser cladding [J]. Surf. Coat. Technol., 2019, 375: 903
|
[36] |
Singh G, Kaur M, Upadhyaya R. Wear and friction behavior of NiCrBSi coatings at elevated temperatures [J]. J. Therm. Spray Technol., 2019, 28: 1081
|
[37] |
Yang X, Zou Y H, Huang Q Z, et al. Analysis on the oxidation behavior of Mo5Si3-MoSi2/SiC multi-coating at high temperature [J]. Acta Mater. Compos. Sin., 2009, 26(4): 119
|
[37] |
杨 鑫, 邹艳红, 黄启忠 等. Mo5Si3-MoSi2/SiC复合涂层的高温抗氧化行为分析 [J]. 复合材料学报, 2009, 26(4): 119
|
[38] |
Rosenkranz A, Costa H L, Baykara M Z, et al. Synergetic effects of surface texturing and solid lubricants to tailor friction and wear—A review [J]. Tribol. Int., 2021, 155: 106792
|
[39] |
Liang J, Liu X B, Ke J, et al. Preparation and high temperature oxidation resistance of laser deposited Ti5Si3/MoSi2/Mo5Si3 reinforced α-Ti/NiTi composite coatings [J]. Surf. Coat. Technol., 2019, 372: 56
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|