Please wait a minute...
金属学报  2025, Vol. 61 Issue (1): 191-202    DOI: 10.11900/0412.1961.2024.00271
  研究论文 本期目录 | 过刊浏览 |
Ni43.5Co19Cr10Fe10Al15Ti2Mo0.5 共晶高熵合金快速凝固行为及组织调控
卢健麟, 任化永, 谢桉, 王建潼, 何峰()
西北工业大学 凝固技术国家重点实验室 西安 710072
Rapid Solidification Behavior and Microstructure Regulation of Ni43.5Co19Cr10Fe10Al15Ti2Mo0.5 Eutectic High-Entropy Alloy
LU Jianlin, REN Huayong, XIE An, WANG Jiantong, HE Feng()
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
引用本文:

卢健麟, 任化永, 谢桉, 王建潼, 何峰. Ni43.5Co19Cr10Fe10Al15Ti2Mo0.5 共晶高熵合金快速凝固行为及组织调控[J]. 金属学报, 2025, 61(1): 191-202.
Jianlin LU, Huayong REN, An XIE, Jiantong WANG, Feng HE. Rapid Solidification Behavior and Microstructure Regulation of Ni43.5Co19Cr10Fe10Al15Ti2Mo0.5 Eutectic High-Entropy Alloy[J]. Acta Metall Sin, 2025, 61(1): 191-202.

全文: PDF(4438 KB)   HTML
摘要: 

为了探索共晶高熵合金在增材制造过程中的快速凝固行为,本工作研究了冷却速率等凝固条件对共晶高熵合金相面积分数、相成分、晶粒形貌及力学性能的影响规律。通过铜模浇铸和选区激光熔化(SLM)分别制备Ni43.5Co19Cr10Fe10Al15Ti2Mo0.5共晶高熵合金,采用SEM、EBSD及TEM对其凝固行为进行了分析,并测试了对应凝固条件下的力学性能。结果表明,在冷却速率最低的铸态试样心部,fcc领先相较多且形成等轴晶,而B2相的相面积分数为16.9%。在冷却速率更快的铸态试样表层,fcc领先相明显减少,B2相面积分数增加至23.0%。同时,铸态试样中各个区域B2相中Al元素浓度均为23.2% (原子分数,下同)。然而,在冷却速率最大的SLM试样中,B2相的面积分数最小,垂直于打印方向的统计结果为15.8%,且B2相中Al元素浓度降低至16.5%。SLM试样中B2相面积分数的下降是由于过快的冷却速率引起溶质截留,形成过饱和固溶体,导致达到共晶成分的液相减少。此外,扫描速率较大时,温度梯度较大,SLM试样普遍由柱状晶组成;当扫描速率降低至500 mm/s时,由于温度梯度减小,发生了柱状晶-等轴晶转变。SLM试样的力学性能优于铸态试样,平均室温抗拉强度达(1320.5 ± 4.5) MPa,平均断裂延伸率达到(25.8 ± 2.2)%。

关键词 共晶高熵合金快速凝固选区激光熔化    
Abstract

Eutectic high-entropy alloys (EHEAs) have exhibited excellent mechanical properties. However, their rapid solidification behaviors during additive manufacturing processes still require further investigation. In the present study, Ni43.5Co19Cr10Fe10Al15Ti2Mo0.5 EHEA via copper mold casting and selective laser melting (SLM) were produced to study the influence of solidification conditions, such as cooling rate, on the phase area fraction, phase composition, grain morphology, and mechanical properties of the alloy. SEM, EBSD, TEM, and tensile testing were used to systematically analyze the solidification behaviors and mechanical properties of this EHEA. The center of the as-cast specimen has the lowest cooling rate, a large amount of fcc primary phase appears and forms equiaxed crystals, with a B2 phase area fraction of 16.9%. As the cooling rate increases, the amount of fcc primary phase decreases, and the area fraction of the B2 phase increases to 23.0% on the surface of the as-cast specimen. Meanwhile, the concentration of Al in the B2 phase of each region in the as-cast specimen is 23.2% (atomic fraction, the same below). However, with the continuous increase in the cooling rate, the area fraction of B2 phase tends to reach its lowest value in the SLM specimen, with only 15.8% in edge-on orientation, and the concentration of Al in the B2 phase decreases to 16.5%. The decrease in the area fraction of the B2 phase in SLM samples is due to solute trapping caused by the high cooling rate, resulting in the formation of a supersaturated solid solution and a reduction in the amount of liquid phase available for forming eutecticphase. In addition, during the SLM process, a high scanning rate results in a large temperature gradient, which promotes the formation of columnar crystals. Reducing the scanning rate to 500 mm/s causes a columnar-to-equiaxed transition due to the decrease in temperature gradient. The mechanical properties of the SLM specimens are superior to those of the as-cast specimens, with a room-temperature ultimate tensile strength of (1320.5 ± 4.5) MPa and a fracture elongation of (25.8 ± 2.2)%.

Key wordseutectic high-entropy alloy    rapid solidification    selective laser melting
收稿日期: 2024-08-14     
ZTFLH:  TG146.1  
基金资助:国家自然科学基金项目(52474425)
通讯作者: 何峰,fenghe1991@nwpu.edu.cn,主要从事先进金属材料的强韧化设计与增材制造研究
Corresponding author: HE Feng, professor, Tel: 18710790457, E-mail: fenghe1991@nwpu.edu.cn
作者简介: 卢健麟,男,1999年生,硕士生
图1  铸态粉末试样的XRD谱
图2  铸态试样截面不同区域的OM像及EBSD像
图3  铸态试样各个区域的SEM像及EDS分析
图4  粉末原料和打印态SLM-C试样的XRD谱
图5  打印态SLM-C试样的OM像、SEM像及反极图(IPF)
图6  打印态SLM-C试样垂直于增材方向截面的TEM像、选区电子衍射(SAED)花样及EDS分析
图7  打印态SLM-C试样、铸态试样柱状晶区和心部等轴晶区的工程应力-应变曲线和对应取样位置
图8  SLM-E试样的IPF和SEM像及打印态等轴晶、柱状晶试样的激光功率、扫描速率、道间距和能量密度的关系
图9  铸态试样心部缩孔的OM像
图10  SLM-E试样的应力-应变曲线、OM像以及SLM-C和SLM-E试样的局部平均取向差(KAM)图
1 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Mater. Sci. Eng., 2004, A375-377: 213
2 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts[J]. Acta Mater., 2017, 122: 448
3 Wu Q F, He F, Li J J, et al. Phase-selective recrystallization makes eutectic high-entropy alloys ultra-ductile[J]. Nat. Commun., 2022, 13: 4697
doi: 10.1038/s41467-022-32444-4 pmid: 35948571
4 Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys[J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200 pmid: 25160691
5 Lu Y P, Dong Y, Jiang H, et al. Promising properties and future trend of eutectic high entropy alloys[J]. Scr. Mater., 2020, 187: 202
6 Jia Y H, Wang Z J, Wu Q F, et al. Enhancing the yield strength of Ni-Co-Cr-Fe-Al as-cast hypoeutectic high-entropy alloys by introducing γ′ precipitation[J]. Mater. Sci. Eng., 2022, A858: 144190
7 Wu Q F, Wang Z J, Zheng T. A casting eutectic high entropy alloy with superior strength-ductility combination[J]. Mater. Lett., 2019, 253: 268
8 Lu Y P, Gao X Z, Jiang L, et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range[J]. Acta Mater., 2017, 124: 143
9 John R, Karati A, Joseph J, et al. Microstructure and mechanical properties of a high entropy alloy with a eutectic composition (AlCoCrFeNi2.1) synthesized by mechanical alloying and spark plasma sintering[J]. J. Alloys Compd., 2020, 835: 155424
10 DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components—Process, structure and properties[J]. Prog. Mater. Sci., 2018, 92: 112
11 Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals[J]. Acta Mater., 2016, 117: 371
12 Gorsse S, Hutchinson C, Gouné M, et al. Additive manufacturing of metals: A brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys[J]. Sci. Technol. Adv. Mater., 2017, 18: 584
13 Sistla H R, Newkirk J W, Frank Liou F. Effect of Al/Ni ratio, heat treatment on phase transformations and microstructure of Al x FeCoCrNi2 - x (x = 0.3, 1) high entropy alloys[J]. Mater. Des., 2015, 81: 113
14 Chai Z S, Zhou K X, Wu Q F, et al. Deformation behaviors of an additive-manufactured Ni32Co30Cr10Fe10Al18 eutectic high entropy alloy at ambient and elevated temperatures[J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 1607
15 Zhou K X, Li J J, Wu Q F, et al. Remelting induced fully-equiaxed microstructures with anomalous eutectics in the additive manufactured Ni32Co30Cr10Fe10Al18 eutectic high-entropy alloy[J]. Scr. Mater., 2021, 201: 113952
16 Alamoudi M T, Wiezorek J M K. Probing effects of solute trapping on the mechanical properties of α-Al in rapidly solidified hypoeutectic Al-10at.%Cu after surface laser melting[J]. Mater. Sci. Eng., 2024, A890: 145934
17 Wang Y M, Voisin T, McKeown J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility[J]. Nat. Mater., 2018, 17: 63
doi: 10.1038/nmat5021 pmid: 29115290
18 Zhang K Q, Chen C Y, Xu S Z, et al. On the microstructure evolution and strengthening mechanism of GH4099 Ni-based superalloy fabricated by laser powder bed fusion[J]. Mater. Today Commun., 2024, 40: 109734
19 Kim J G, Seol J B, Park J M, et al. Effects of cell network structure on the strength of additively manufactured stainless steels[J]. Met. Mater. Int., 2021, 27: 2614
20 Li S H, Zhao Y K, Ramamurty U. Role of the solidification cells on the yield strength of the Al-Si-Mg alloy manufactured using laser powder bed fusion: A micropillar compression study[J]. Scr. Mater., 2023, 234: 115566
21 Geng Z W, Chen C, Song M, et al. High strength Al0.7CoCrFeNi2.4 hypereutectic high entropy alloy fabricated by laser powder bed fusion via triple-nanoprecipitation[J]. J. Mater. Sci. Technol., 2024, 187: 141
22 Kumar P, Huang S, Cook D H, et al. A strong fracture-resistant high-entropy alloy with nano-bridged honeycomb microstructure intrinsically toughened by 3D-printing[J]. Nat. Commun., 2024, 15: 841
doi: 10.1038/s41467-024-45178-2 pmid: 38286856
23 Trivedi R, Magnin P, Kurz W. Theory of eutectic growth under rapid solidification conditions[J]. Acta Metall., 1987, 35: 971
24 Zimmermann M, Carrard M, Kurz W. Rapid solidification of Al-Cu eutectic alloy by laser remelting[J]. Acta Metall., 1989, 37: 3305
25 Schempp P, Rethmeier M. Understanding grain refinement in aluminium welding: Henry Granjon Prize 2015 winner category B: Materials behaviour and weldability[J]. Weld. World, 2015, 59: 767
26 Qi X, Takata N, Suzuki A, et al. Laser powder bed fusion of a near-eutectic Al-Fe binary alloy: Processing and microstructure[J]. Addit. Manuf., 2020, 35: 101308
27 Kozieł T. Estimation of cooling rates in suction casting and copper-mould casting processes[J]. Arch. Metall. Mater., 2015, 60: 767
28 Wang W L, Liu W Q, Yang X, et al. Multi-scale simulation of columnar-to-equiaxed transition during laser selective melting of rare earth magnesium alloy[J]. J. Mater. Sci. Technol., 2022, 119: 11
doi: 10.1016/j.jmst.2021.12.029
29 Li Y L, Gu D D. Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder[J]. Mater. Des., 2014, 63: 856
30 Hornung J, Zikin A, Pichelbauer K, et al. Influence of cooling speed on the microstructure and wear behaviour of hypereutectic Fe-Cr-C hardfacings[J]. Mater. Sci. Eng., 2013, A576: 243
31 Behera S K, Van Hoogstraten J, Rane K K, et al. The effect of cooling rate on the microstructure and physical properties of hypereutectic Al-Ce alloys[J]. Int. J. Met., 2024, 18: 6
32 Ao X H, Xia H X, Liu J H, et al. Simulations of microstructure coupling with moving molten pool by selective laser melting using a cellular automaton[J]. Mater. Des., 2020, 185: 108230
33 Antillon E A, Hareland C A, Voorhees P W. Solute trapping and solute drag during non-equilibrium solidification of Fe-Cr alloys[J]. Acta Mater., 2023, 248: 118769
34 Gäumann M, Henry S, Cléton F, et al. Epitaxial laser metal forming: Analysis of microstructure formation[J]. Mater. Sci. Eng., 1999, A271: 232
35 Yang K V, Shi Y J, Palm F, et al. Columnar to equiaxed transition in Al-Mg(-Sc)-Zr alloys produced by selective laser melting[J]. Scr. Mater., 2018, 145: 113
36 Li H G, Huang Y J, Jiang S S, et al. Columnar to equiaxed transition in additively manufactured CoCrFeMnNi high entropy alloy[J]. Mater. Des., 2021, 197: 109262
37 Bermingham M J, StJohn D H, Krynen J, et al. Promoting the columnar to equiaxed transition and grain refinement of titanium alloys during additive manufacturing[J]. Acta Mater., 2019, 168: 261
doi: 10.1016/j.actamat.2019.02.020
38 Kurz W, Bezençon C, Gäumann M. Columnar to equiaxed transition in solidification processing[J]. Sci. Technol. Adv. Mater., 2001, 2: 185
39 Zhang G H, Lu X F, Li J Q, et al. In-situ grain structure control in directed energy deposition of Ti6Al4V[J]. Addit. Manuf., 2022, 55: 102865
40 Tan X P, Kok Y, Tan Y J, et al. Graded microstructure and mechanical properties of additive manufactured Ti-6Al-4V via electron beam melting[J]. Acta Mater., 2015, 97: 1
41 Liu Z Y, Zhao D D, Wang P, et al. Additive manufacturing of metals: Microstructure evolution and multistage control[J]. J. Mater. Sci. Technol., 2022, 100: 224
doi: 10.1016/j.jmst.2021.06.011
42 Huang Y Z, Fleming T G, Clark S J, et al. Keyhole fluctuation and pore formation mechanisms during laser powder bed fusion additive manufacturing[J]. Nat. Commun., 2022, 13: 1170
doi: 10.1038/s41467-022-28694-x pmid: 35246522
43 Wang L, Zhang Y M, Chia H Y, et al. Mechanism of keyhole pore formation in metal additive manufacturing[J]. npj Comput. Mater., 2022, 8: 22
44 Liu J G, Wen P. Metal vaporization and its influence during laser powder bed fusion process[J]. Mater. Des., 2022, 215: 110505
45 Guo L P, Wang H Z, Liu H J, et al. Understanding keyhole induced-porosities in laser powder bed fusion of aluminum and elimination strategy[J]. Int. J. Mach. Tools Manuf., 2023, 184: 103977
[1] 王叶青, 付珂, 赵永柱, 苏礼季, 陈正. Fe7(CoNiMn)80B13 共晶高熵合金的深过冷非平衡凝固行为及微观组织演变[J]. 金属学报, 2025, 61(1): 143-153.
[2] 王志军, 白晓昱, 王健斌, 姜慧, 焦文娜, 李天昕, 卢一平. 共晶高熵合金十年发展回顾(20142024):设计、制备与应用[J]. 金属学报, 2025, 61(1): 1-11.
[3] 韩英, 吴雨航, 赵春禄, 张靖实, 李振民, 冉旭. 选区激光熔化成形Al-Si-Fe-Mn-Ni合金的高温蠕变行为[J]. 金属学报, 2025, 61(1): 154-164.
[4] 蔡宣明, 张伟, 范志强, 高玉波, 王俊元, 张柱军. AlSi10Mg多孔结构在不同加载应变率下的损伤模式及响应机制[J]. 金属学报, 2024, 60(7): 857-868.
[5] 张楠, 张海武, 王淼辉. 微米级选区激光熔化316L不锈钢的拉伸力学性能[J]. 金属学报, 2024, 60(2): 211-219.
[6] 张振武, 李继康, 许文贺, 沈沐宇, 戚磊一, 郑可盈, 李伟, 魏青松. 搭接工艺对选区激光熔化镍基单晶高温合金DD491晶体取向与微观组织的影响[J]. 金属学报, 2024, 60(11): 1471-1486.
[7] 唐旭, 张昊, 薛鹏, 吴利辉, 刘峰超, 朱正旺, 倪丁瑞, 肖伯律, 马宗义. 铸态及激光粉末床熔融AlCoCrFeNi2.1 共晶高熵合金的微观组织及力学性能[J]. 金属学报, 2024, 60(11): 1461-1470.
[8] 陈玉勇, 时国浩, 杜之明, 张宇, 常帅. 增材制造TiAl合金的研究进展[J]. 金属学报, 2024, 60(1): 1-15.
[9] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[10] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[11] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[12] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[13] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[14] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[15] 祝国梁, 孔德成, 周文哲, 贺戬, 董安平, 疏达, 孙宝德. 选区激光熔化 γ' 相强化镍基高温合金裂纹形成机理与抗裂纹设计研究进展[J]. 金属学报, 2023, 59(1): 16-30.