|
|
Ni43.5Co19Cr10Fe10Al15Ti2Mo0.5 共晶高熵合金快速凝固行为及组织调控 |
卢健麟, 任化永, 谢桉, 王建潼, 何峰( ) |
西北工业大学 凝固技术国家重点实验室 西安 710072 |
|
Rapid Solidification Behavior and Microstructure Regulation of Ni43.5Co19Cr10Fe10Al15Ti2Mo0.5 Eutectic High-Entropy Alloy |
LU Jianlin, REN Huayong, XIE An, WANG Jiantong, HE Feng( ) |
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China |
引用本文:
卢健麟, 任化永, 谢桉, 王建潼, 何峰. Ni43.5Co19Cr10Fe10Al15Ti2Mo0.5 共晶高熵合金快速凝固行为及组织调控[J]. 金属学报, 2025, 61(1): 191-202.
Jianlin LU,
Huayong REN,
An XIE,
Jiantong WANG,
Feng HE.
Rapid Solidification Behavior and Microstructure Regulation of Ni43.5Co19Cr10Fe10Al15Ti2Mo0.5 Eutectic High-Entropy Alloy[J]. Acta Metall Sin, 2025, 61(1): 191-202.
1 |
Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Mater. Sci. Eng., 2004, A375-377: 213
|
2 |
Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts[J]. Acta Mater., 2017, 122: 448
|
3 |
Wu Q F, He F, Li J J, et al. Phase-selective recrystallization makes eutectic high-entropy alloys ultra-ductile[J]. Nat. Commun., 2022, 13: 4697
doi: 10.1038/s41467-022-32444-4
pmid: 35948571
|
4 |
Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys[J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200
pmid: 25160691
|
5 |
Lu Y P, Dong Y, Jiang H, et al. Promising properties and future trend of eutectic high entropy alloys[J]. Scr. Mater., 2020, 187: 202
|
6 |
Jia Y H, Wang Z J, Wu Q F, et al. Enhancing the yield strength of Ni-Co-Cr-Fe-Al as-cast hypoeutectic high-entropy alloys by introducing γ′ precipitation[J]. Mater. Sci. Eng., 2022, A858: 144190
|
7 |
Wu Q F, Wang Z J, Zheng T. A casting eutectic high entropy alloy with superior strength-ductility combination[J]. Mater. Lett., 2019, 253: 268
|
8 |
Lu Y P, Gao X Z, Jiang L, et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range[J]. Acta Mater., 2017, 124: 143
|
9 |
John R, Karati A, Joseph J, et al. Microstructure and mechanical properties of a high entropy alloy with a eutectic composition (AlCoCrFeNi2.1) synthesized by mechanical alloying and spark plasma sintering[J]. J. Alloys Compd., 2020, 835: 155424
|
10 |
DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components—Process, structure and properties[J]. Prog. Mater. Sci., 2018, 92: 112
|
11 |
Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals[J]. Acta Mater., 2016, 117: 371
|
12 |
Gorsse S, Hutchinson C, Gouné M, et al. Additive manufacturing of metals: A brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys[J]. Sci. Technol. Adv. Mater., 2017, 18: 584
|
13 |
Sistla H R, Newkirk J W, Frank Liou F. Effect of Al/Ni ratio, heat treatment on phase transformations and microstructure of Al x FeCoCrNi2 - x (x = 0.3, 1) high entropy alloys[J]. Mater. Des., 2015, 81: 113
|
14 |
Chai Z S, Zhou K X, Wu Q F, et al. Deformation behaviors of an additive-manufactured Ni32Co30Cr10Fe10Al18 eutectic high entropy alloy at ambient and elevated temperatures[J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 1607
|
15 |
Zhou K X, Li J J, Wu Q F, et al. Remelting induced fully-equiaxed microstructures with anomalous eutectics in the additive manufactured Ni32Co30Cr10Fe10Al18 eutectic high-entropy alloy[J]. Scr. Mater., 2021, 201: 113952
|
16 |
Alamoudi M T, Wiezorek J M K. Probing effects of solute trapping on the mechanical properties of α-Al in rapidly solidified hypoeutectic Al-10at.%Cu after surface laser melting[J]. Mater. Sci. Eng., 2024, A890: 145934
|
17 |
Wang Y M, Voisin T, McKeown J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility[J]. Nat. Mater., 2018, 17: 63
doi: 10.1038/nmat5021
pmid: 29115290
|
18 |
Zhang K Q, Chen C Y, Xu S Z, et al. On the microstructure evolution and strengthening mechanism of GH4099 Ni-based superalloy fabricated by laser powder bed fusion[J]. Mater. Today Commun., 2024, 40: 109734
|
19 |
Kim J G, Seol J B, Park J M, et al. Effects of cell network structure on the strength of additively manufactured stainless steels[J]. Met. Mater. Int., 2021, 27: 2614
|
20 |
Li S H, Zhao Y K, Ramamurty U. Role of the solidification cells on the yield strength of the Al-Si-Mg alloy manufactured using laser powder bed fusion: A micropillar compression study[J]. Scr. Mater., 2023, 234: 115566
|
21 |
Geng Z W, Chen C, Song M, et al. High strength Al0.7CoCrFeNi2.4 hypereutectic high entropy alloy fabricated by laser powder bed fusion via triple-nanoprecipitation[J]. J. Mater. Sci. Technol., 2024, 187: 141
|
22 |
Kumar P, Huang S, Cook D H, et al. A strong fracture-resistant high-entropy alloy with nano-bridged honeycomb microstructure intrinsically toughened by 3D-printing[J]. Nat. Commun., 2024, 15: 841
doi: 10.1038/s41467-024-45178-2
pmid: 38286856
|
23 |
Trivedi R, Magnin P, Kurz W. Theory of eutectic growth under rapid solidification conditions[J]. Acta Metall., 1987, 35: 971
|
24 |
Zimmermann M, Carrard M, Kurz W. Rapid solidification of Al-Cu eutectic alloy by laser remelting[J]. Acta Metall., 1989, 37: 3305
|
25 |
Schempp P, Rethmeier M. Understanding grain refinement in aluminium welding: Henry Granjon Prize 2015 winner category B: Materials behaviour and weldability[J]. Weld. World, 2015, 59: 767
|
26 |
Qi X, Takata N, Suzuki A, et al. Laser powder bed fusion of a near-eutectic Al-Fe binary alloy: Processing and microstructure[J]. Addit. Manuf., 2020, 35: 101308
|
27 |
Kozieł T. Estimation of cooling rates in suction casting and copper-mould casting processes[J]. Arch. Metall. Mater., 2015, 60: 767
|
28 |
Wang W L, Liu W Q, Yang X, et al. Multi-scale simulation of columnar-to-equiaxed transition during laser selective melting of rare earth magnesium alloy[J]. J. Mater. Sci. Technol., 2022, 119: 11
doi: 10.1016/j.jmst.2021.12.029
|
29 |
Li Y L, Gu D D. Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder[J]. Mater. Des., 2014, 63: 856
|
30 |
Hornung J, Zikin A, Pichelbauer K, et al. Influence of cooling speed on the microstructure and wear behaviour of hypereutectic Fe-Cr-C hardfacings[J]. Mater. Sci. Eng., 2013, A576: 243
|
31 |
Behera S K, Van Hoogstraten J, Rane K K, et al. The effect of cooling rate on the microstructure and physical properties of hypereutectic Al-Ce alloys[J]. Int. J. Met., 2024, 18: 6
|
32 |
Ao X H, Xia H X, Liu J H, et al. Simulations of microstructure coupling with moving molten pool by selective laser melting using a cellular automaton[J]. Mater. Des., 2020, 185: 108230
|
33 |
Antillon E A, Hareland C A, Voorhees P W. Solute trapping and solute drag during non-equilibrium solidification of Fe-Cr alloys[J]. Acta Mater., 2023, 248: 118769
|
34 |
Gäumann M, Henry S, Cléton F, et al. Epitaxial laser metal forming: Analysis of microstructure formation[J]. Mater. Sci. Eng., 1999, A271: 232
|
35 |
Yang K V, Shi Y J, Palm F, et al. Columnar to equiaxed transition in Al-Mg(-Sc)-Zr alloys produced by selective laser melting[J]. Scr. Mater., 2018, 145: 113
|
36 |
Li H G, Huang Y J, Jiang S S, et al. Columnar to equiaxed transition in additively manufactured CoCrFeMnNi high entropy alloy[J]. Mater. Des., 2021, 197: 109262
|
37 |
Bermingham M J, StJohn D H, Krynen J, et al. Promoting the columnar to equiaxed transition and grain refinement of titanium alloys during additive manufacturing[J]. Acta Mater., 2019, 168: 261
doi: 10.1016/j.actamat.2019.02.020
|
38 |
Kurz W, Bezençon C, Gäumann M. Columnar to equiaxed transition in solidification processing[J]. Sci. Technol. Adv. Mater., 2001, 2: 185
|
39 |
Zhang G H, Lu X F, Li J Q, et al. In-situ grain structure control in directed energy deposition of Ti6Al4V[J]. Addit. Manuf., 2022, 55: 102865
|
40 |
Tan X P, Kok Y, Tan Y J, et al. Graded microstructure and mechanical properties of additive manufactured Ti-6Al-4V via electron beam melting[J]. Acta Mater., 2015, 97: 1
|
41 |
Liu Z Y, Zhao D D, Wang P, et al. Additive manufacturing of metals: Microstructure evolution and multistage control[J]. J. Mater. Sci. Technol., 2022, 100: 224
doi: 10.1016/j.jmst.2021.06.011
|
42 |
Huang Y Z, Fleming T G, Clark S J, et al. Keyhole fluctuation and pore formation mechanisms during laser powder bed fusion additive manufacturing[J]. Nat. Commun., 2022, 13: 1170
doi: 10.1038/s41467-022-28694-x
pmid: 35246522
|
43 |
Wang L, Zhang Y M, Chia H Y, et al. Mechanism of keyhole pore formation in metal additive manufacturing[J]. npj Comput. Mater., 2022, 8: 22
|
44 |
Liu J G, Wen P. Metal vaporization and its influence during laser powder bed fusion process[J]. Mater. Des., 2022, 215: 110505
|
45 |
Guo L P, Wang H Z, Liu H J, et al. Understanding keyhole induced-porosities in laser powder bed fusion of aluminum and elimination strategy[J]. Int. J. Mach. Tools Manuf., 2023, 184: 103977
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|