Allvac 718Plus高温合金第二相演变与性能研究进展
Advances in Secondary Phase Evolution and Performance Enhancement of Allvac 718Plus Superalloy
通讯作者: 刘永长,ycliu@tju.edu.cn,主要从事金属成形与加工研究
责任编辑: 李海兰
收稿日期: 2024-06-05 修回日期: 2024-08-30
基金资助: |
|
Corresponding authors: LIU Yongchang, professor, Tel:
Received: 2024-06-05 Revised: 2024-08-30
Fund supported: |
|
作者简介 About authors
唐丽婷,女,1999年生,博士生
Allvac 718Plus合金是在Inconel 718合金的基础上通过成分优化研制出的一种新型镍基高温合金,最高服役温度较Inconel 718合金提高约55 ℃,因其具有优异的抗蠕变、抗疲劳性能以及锻造、焊接等加工性能,在制造700 ℃服役部件上具有巨大潜力。作为一种应用时间较短的沉淀强化型高温合金,阐明其热处理过程中的第二相演变规律对于通过热处理调控组织从而优化合金性能具有重要意义。本文主要介绍了合金中的第二相,包括强化相γ′相、晶界相η相,以及在特定条件下析出的γ″相、δ相、σ相和C14 Laves相;分析了Allvac 718Plus合金标准热处理过程中γ′相和η相的析出行为,预固溶处理和直接时效处理的应用,以及长期时效过程中的第二相演变规律,提出复合γ″-γ′结构是实现合金长时服役的策略;结合高温服役过程中第二相的组织演变,分析了2种主要第二相对抗疲劳性能和抗蠕变性能的影响;确定了合金中缓慢的γ′相析出动力学与合金可焊性的匹配性,总结了Laves相和η相对焊接过程中的开裂及应变时效开裂的影响。
关键词:
Allvac 718Plus is a newly developed nickel-based superalloy derived from Inconel 718 alloy via composition optimization. Its maximum service temperature is approximately 55 oC higher than that of Inconel 718. With its excellent combination of creep resistance, fatigue resistance, machinability, and weldability, the Allvac 718Plus is highly suitable for manufacturing high-temperature components that can operate at up to 700 oC. As a precipitation-strengthened superalloy that is relatively new with limited application history, understanding the evolution of its secondary phases during heat treatment is crucial for optimizing its properties via microstructure control. In this context, the secondary phases found in Allvac 718Plus are introduced, including the primary strengthening γ′ phase, the main grain-boundary η phase, and the γ″, δ, σ, and C14 Laves phases that form under specific conditions. The precipitation behaviors of the γ′ and η phases during standard heat treatments are examined, along with the effects of presolidification and direct aging treatments. Additionally, the evolution of secondary phases during prolonged thermal exposure are explored. The results demonstrate that the formation of a more stable composite γ″-γ′ structure is a promising strategy to achieve long-term serviceability for the alloy. The influence of the microstructural evolution of secondary phases during high-temperature service on fatigue and creep resistance is also analyzed, focusing on the roles of the two primary secondary phases. Furthermore, this paper highlights the correlation between the sluggish kinetics of γ′ phase precipitation in Allvac 718Plus and its weldability. A comprehensive overview of the harmful effects of the Laves and η phases on cracking during welding and strain-age cracking is also provided.
Keywords:
本文引用格式
唐丽婷, 郭倩颖, 李冲, 丁然, 刘永长.
TANG Liting, GUO Qianying, LI Chong, DING Ran, LIU Yongchang.
高温合金因其优异的高温强度、组织稳定性、抗疲劳、抗蠕变以及抗氧化腐蚀性能,成为现代航空发动机和各种工业燃气轮机发展不可替代的关键材料[1~3]。Inconel 718合金(国内牌号:GH4169)是650 ℃以下强度最高的高温合金之一,具有优异的综合性能,是目前产量最高的变形高温合金,广泛应用于航空、航天等领域[4~6]。然而,当温度高于650 ℃时,Inconel 718合金的主要强化相γ″相会迅速粗化,并转变为其平衡相δ相,严重降低了合金的高温强度[5,7],因此,650 ℃是Inconel 718合金长期使用的最高温度。新一代航空涡轮发动机中对于热端部件有更高的承温要求,因此亟需开发具有更高承温能力和比强度的新型高温合金。
20世纪90年代,美国ATI Allvac公司在Inconel 718合金的基础上,通过成分优化设计了承温能力更高的Allvac 718Plus合金[8,9],该合金在保留Nb元素的基础上,增加了Al + Ti含量并提高了Al / Ti比,添加了Co和W元素并降低了Fe含量,使合金的主要强化相由原来的γ″相变为热稳定性更高的γ′相,最高服役温度可达704 ℃[10]。在704 ℃下,Allvac 718Plus合金的拉伸和低周疲劳性能与Waspaloy合金(国内牌号为GH4738,最高服役温度为760~870 ℃[11])相当,且Nb组元的保留使合金的锻造和焊接性能明显优于Waspaloy合金而接近Inconel 718合金,有效填补了Waspaloy合金和Inconel 718合金服役温度区间的空白,同时其制造成本介于2种合金之间,有望成为700 ℃服役部件的首选材料。高温合金沉淀强化主要来源于位错与第二相之间的交互作用,因此第二相的性质、数量、尺寸和体积分数等参数是影响合金性能的重要因素。Allvac 718Plus合金的高温强度来源于在γ基体上共格析出的弥散球状γ′相,此外,在特定条件下晶界会析出针状/板条状的η相,均不同于Inconel 718合金中对应的主要强化相γ″相和主要晶界相δ相[12],这主要与其化学成分不同有关,而不同的第二相析出使其对Allvac 718Plus性能的影响机理也存在明显差异。
作为一种新研发的高温合金,Allvac 718Plus合金在热处理过程中的组织演变规律尚不明确。热处理制度直接决定了第二相的析出行为,因此阐明第二相析出行为及其对合金性能的影响机理,对实现Allvac 718Plus合金在高温部件中的广泛应用具有重要意义。基于此,本文对Allvac 718Plus合金组织中的第二相类型及其特征、在标准热处理和长期时效过程中的第二相演变规律、第二相析出与合金抗疲劳和抗蠕变性能之间的内在联系,以及合金焊接工艺的研究进展进行了介绍和总结。
1 Allvac 718Plus高温合金中的第二相种类
Allvac 718Plus高温合金是一种析出强化型镍基高温合金,其化学成分(质量分数,%)为:Cr 17.00~21.00,Co 8.00~10.00,Fe 8.00~10.00,Nb 5.20~5.80,Mo 2.50~3.10,Al 1.20~1.70,Ti 0.50~1.00,W 0.80~1.40,P 0.004~0.02,S < 0.0025,C < 0.05,Si < 0.35,Cu < 0.30,Ni余量[13]。Allvac 718Plus合金的基体相为γ相,主要强化相为γ′相,主要晶界相为η相,2相体积分数分别为22%~27%和1.5%~7.0%[14],在组织中还存在少量MX型碳氮化物。此外,在铸锭或焊缝等凝固组织中会存在有害的枝晶间C14 Laves相(由于Allvac 718Plus合金中出现的Laves相基本均为C14型[15],因此后文将C14 Laves相简称为Laves相)。经过长期时效或服役后,还会析出少量的γ″相、δ相和拓扑密堆(topological closed-packed,TCP)相,其中TCP相主要包括σ和Laves相[16~18]。上述组成相的分子式、点阵常数及晶体结构如表1[4,18~22]所示,主要第二相的晶体结构如图1所示。
表1 Allvac 718Plus高温合金主要相的晶体结构及组成[4,18~22]
Table 1
Phase | Formula | Crystal structure | Lattice constant (a, b, c) |
---|---|---|---|
γ | - | fcc (A1) | a = 0.377 nm |
γ′ | Ni3(Al, Ti) | fcc (L12) | a = 0.379 nm |
γ″ | Ni3Nb | bct (D022) | a = 0.391 nm (c / a = 1.99) |
η | Ni3Nb0.5(Ti, Al)0.5 | Hexagonal (D024) | a = 0.512 nm, c = 0.836 nm |
δ | Ni3Nb | Orthogonal (D0a) | a = 0.514 nm, b = 0.423 nm, c = 0.453 nm |
MX | (Nb, Ti)(C, N) | fcc (B1) | a = 0.443-0.444 nm |
C14 Laves | (Ni, Cr, Fe)2(Nb, Mo, Ti) | Hexagonal (D024) | a = 0.88 nm, c = 0.45 nm |
σ | (Fe, Ni)Cr | Tetragonal ( | a = 0.49 nm, c = 0.78 nm |
图1
图1
Allvac 718Plus合金中主要第二相γ′和η的晶体结构
Fig.1
Crystallographic prototype structures of the γ′ (a) and η (b) phases in Allvac 718Plus alloy
1.1 γ′ 相和 γ″ 相
Allvac 718Plus合金组织中,主要强化相γ′相常以球状形貌从γ相基体中共格析出,溶解温度为899~954 ℃[23]。经标准热处理(954~982 ℃、1 h、油冷或水冷 + 788 ℃、8 h、炉冷至704 ℃、8 h、空冷)后,其体积分数为19.7%~23.2%[24]。与Inconel 718合金中的主要强化相γ″相相比,γ′相具有更佳的高温组织稳定性。这是因为γ″相在高于650 ℃下保温或服役时会迅速粗化,并转化为稳定的δ相,从而明显恶化合金性能[25]。由于Allvac 718Plus合金中的Nb含量高,且Nb作为负偏析元素(即主要从基体γ偏析到γ′相),使得Allvac 718Plus合金中γ′相的Nb含量较高,而Nb原子在Ni基体中的扩散速率明显低于Al和Ti原子,这显著降低了γ′的粗化速率,有效提高了合金的高温性能稳定性,使得合金在704 ℃下具有与Waspaloy合金相当的高温稳定性。组织中的位错密度、成分偏析以及η相的析出等均会明显影响γ′相的析出和粗化速率。此外,在铸锭、焊缝和长期时效组织中还观察到少量γ″相析出,γ″相的形成取决于Nb的局部有效浓度[26]。对于铸锭和焊缝组织,γ″相主要在枝晶间区域析出,这与凝固过程中枝晶间区域Nb元素的偏析有关[27]。经长期时效后,γ′相的粗化长大逐渐将Nb原子排斥至γ/γ′界面处,造成Nb的偏聚,促进了γ″相[28,29]在γ/γ′界面处析出。
1.2 η 相和 δ 相
在加工和热处理过程中,Allvac 718Plus合金的晶界处通常会析出板条状或针状第二相,该相的形貌与Inconel 718合金中的δ相相似,但2者的结构与成分明显不同。Xie等[30]和Pickering等[19]认为该相结构与D024-Ni3Ti一致,但合金中较高含量的Al、Nb占据了原Ti位点,因此Allvac 718Plus合金中该第二相为具有D024结构的密排六方η-Ni3Nb0.5(Ti, Al)0.5相。Allvac 718Plus合金中的η相溶解温度约为1010 ℃[31],析出鼻温区间为940~960 ℃[10]。热处理过程中,η相往往呈针状析出,与γ基体之间保持Blackburn位向关系:{
1.3 TCP相
Allvac 718Plus合金中的TCP相主要包括σ和Laves相,其晶体结构如图2[18]所示。2种相的透射电镜-能谱仪(TEM-EDS)面扫结果如图3[34]所示,结果表明,在Allvac 718Plus合金中Laves相为富Cr、Nb和Mo相,而σ相为富Cr和Mo相。Laves相常在凝固时以不规则形貌的Laves/γ共晶组织形式析出[16,35~37],易导致热裂纹的形成并恶化合金的拉伸性能,因此须通过高温均匀化处理完全或部分溶解Laves相以避免或降低其有害作用,但高温均匀化热处理仍无法完全消除与Laves相有关的元素偏析的影响,Tang等[29,34]指出采用快速凝固技术可制备高固溶度和低偏析度的Allvac 718Plus合金,避免Laves相的形成。此外,Laves相和σ相还会在长期时效后的η/γ界面处形成,这主要是由于Cr的偏析促进这2种富Cr相的形核,且外加应力同样会加速Laves相[38]的析出动力学。
图2
图3
2 Allvac 718Plus合金在热处理过程中的第二相演变规律
对于γ′沉淀强化型Allvac 718Plus合金,通过热处理调控第二相组织,尤其是γ′相和η相的析出行为,是优化其性能最重要的手段,因此,对Allvac 718Plus合金的热处理、微观组织特征与力学性能之间的内在联系与规律的探究一直是研究的热点之一。Allvac 718Plus锻件的制造过程如下:首先通过三联熔炼(真空感应熔炼 + Ar气保护的电渣重熔+真空电弧重熔)得到铸锭,随后进行高温均匀化热处理,以消除或减少有害相并降低成分偏析,经锻造成形后再通过标准热处理得到最终材料[9]。所采用的标准热处理制度与Inconel 718合金相似,即固溶+双级时效制度,但具体热处理温度不同:954~982 ℃、1 h、油冷或水冷+ 788 ℃、8 h、炉冷至704 ℃、8 h、空冷。
2.1 固溶和预固溶处理过程中的第二相演变规律
固溶处理(954~982 ℃、1 h、油冷或水冷)的主要目的是诱导η相在晶界处形成。当η相的含量高于2.5% (质量分数,下同)时,合金表现出良好的抗缺口敏感性;而当η相含量低于1.1%时,合金具有较高的缺口敏感性[31]。另外,η相的不连续析出会促进锯齿状晶界的形成[39],这将阻止晶界滑移和裂纹扩展,并提高晶界的蠕变抗力。但过量η相会显著降低合金强度。因此,适量η相的析出是实现合金最佳性能的必要条件。固溶温度和时间是控制η相析出形貌、尺寸和体积分数的重要参数。科研人员通过选取不同范围的固溶温度和时间,对η相在固溶过程中的析出行为进行了大量研究,包括900~1000 ℃、1~24 h[10],945~1010 ℃、1 h[31],954~1100 ℃、1 h[40],945~975 ℃、1 h[41]和907~1095 ℃、1 h[42]等。结果表明,随着固溶温度的增加(900~1100 ℃),η相的析出速率先增后减,在940~960 ℃之间具有最快析出速率,这与Thermal-Calc计算显示的η相析出的鼻温约在950 ℃一致。η相首先以粒状在晶界形核析出,随后扩展至晶粒内,呈针状形貌,并导致晶界锯齿化,如图4[10]所示。Tang等[34]指出快速凝固Allvac 718Plus合金在固溶时具有独特的第二相析出行为,在960 ℃固溶处理过程中,第二相析出顺序如下。1 h:η + MC,6 h:η + MC + Laves,≥ 8 h:MC + Laves,如图5[34]所示。快速凝固组织的高位错密度和低偏析加速了固溶过程中MC相和Laves相的析出,同时富Nb的MC相和Laves相的析出也促进了后续固溶过程中η相溶解。η相的长大与Shockley不全位错有关,而其溶解与位错的攀移有关。
图4
图4
经1000 ℃、1 h和920 ℃、1 h固溶处理后Allvac 718Plus合金晶界处的粒状η相和导致晶界锯齿化的针状η相[10]
Fig.4
SEM images of the grain-boundary η phase with different morphologies and the serrated boundary induced by needle-like η phase in Allvac 718Plus solution treated for 1 h at 1000 oC (a, b) and 920 oC (c, d), respectively, followed by the dual aging treatment (The yellow arrows denote the growth directions of the granular η phase)[10]
图5
图5
快速凝固Allvac 718Plus合金在960 ℃固溶处理过程中的第二相演变过程[34]
Fig.5
Schematics of the evolution of secondary phases in rapidly-solidified Allvac 718Plus alloy during solution treatment at 960 oC for 1 h (a), 6 h (b), 8 h (c), 14 h (d), and 24 h (e) (The secondary phases consist of the η phase, the MC carbides, and the Laves (C14) phase)[34]
对于Allvac 718Plus合金,固溶处理与γ′相析出关系密切,主要包括2个方面。一是由于具有相似的组成元素,如Al和Nb,合金中η相和γ′相的总含量通常为27%~28%,因此η相含量的升高或降低往往伴随着γ′相含量的降低或升高[41];二是固溶温度和时间决定了一次γ′相能否完全溶解,而一次γ′相的含量会影响二次γ′相的析出,此外,固溶后冷却速率同样会影响二次γ′相的尺寸和数密度[43,44],较快的固溶冷速会增加合金中的位错密度,从而促进后续时效过程中的元素扩散,这不仅为γ′相提供了形核位点,同时也加快了其析出动力学。相较于大尺寸的一次γ′相,细小的二次γ′相起主要强化作用,因此固溶处理需在保证析出一定含量η相和溶解大部分一次γ′相的同时,采用较低的固溶冷速(即油冷或水冷),以实现合金缺口敏感抗性、蠕变抗性和拉伸强度的最佳组合。
2.2 双级时效和直接时效处理过程中的 γ′ 相析出行为
γ′相数量是沉淀强化型高温合金热强性的根本保证。因此,在经过上述固溶处理后,必须对合金进行时效处理,以诱使大量细小且共格的γ′相析出,从而保证合金的高热强性[31,45]。目前,采用的主要时效制度为双级时效,即:788 ℃、8 h、炉冷至704 ℃、8 h、空冷。Whitmore等[46]研究了经过双级时效和单级时效的Allvac 718Plus合金的γ′相析出特征和合金硬度,经双级时效处理试样的硬度较经单级时效处理试样高约12%,如表2[46]所示,这是由于经双级时效处理的试样具有更高密度的γ′相,经双级时效处理后γ′相的数密度和尺寸分别为((1.7 × 1022) ± (2.5 × 1020)) m-3和(28.0 ± 3.02) nm,而经单级时效处理后数密度和尺寸分别为((1.25 × 1022) ± (2 × 1020)) m-3和(23.5 ± 2.9) nm,因此相较于单级时效工艺,采用双级时效处理更有利于提高合金强度。
表2 经单级时效和双级时效处理Allvac 718Plus合金的显微硬度和等效的最大压力[46]
Table 2
Heat treatment | Vicker's hardness / HV | Equivalent pressure / GPa |
---|---|---|
Single aged (788 oC, 4 h, air cooling) | 466.8 ± 11.8 | 4.58 ± 0.12 |
Double aged (788 oC, 4 h, water cooling + 675 oC, 8 h, air cooling) | 526.30 ± 11.2 | 5.16 ± 0.11 |
Allvac 718Plus合金采用的标准热处理制度参考Inconel 718合金,采用标准热处理工艺处理的Inconel 718合金主要用于制造非关键性或难以成型的部件,或用于制造在δ完全溶解温度以上成型的部件[7]。作为一种成熟的高温部件用合金,除了标准热处理工艺外,通常还采用高强热处理工艺和直接时效工艺对Inconel 718合金进行热处理。其中,直接时效工艺主要用于对拉伸强度和低周疲劳性能要求较高的发动机部件。采用这种工艺的Inconel 718合金主要在δ相溶解温度以下进行锻造,锻造后不经固溶处理而仅进行双级时效处理。由于γ″相缓慢的粗化速率,直接时效工艺常用于如Inconel 718合金这类γ″相沉淀强化型合金,但Allvac 718Plus合金中的γ′相Nb含量较高,其析出动力学较其他γ′相强化合金更加缓慢。为了研究Allvac 718Plus在高强环境下的应用前景,Cao和Kennedy[47]研究了直接时效工艺对Allvac 718Plus合金的影响,结果表明:对于Allvac 718Plus合金,适于采用直接时效工艺的锻造温度范围为927~1038 ℃,在此锻造温度范围下,合金中有适量η相析出,避免了过高的缺口敏感性;相较于标准热处理试样,直接时效试样中的γ′相具有相似的体积分数,但其数密度明显更高、尺寸更小;在经954 ℃锻造后采用直接时效工艺可以显著提高合金强度(704 ℃下屈服强度和抗拉强度均提高约100 MPa),经982~1038 ℃锻造后,采用直接时效工艺可显著增加合金持久寿命;Allvac 718Plus合金可能是生产细晶、高强度的直接时效锻件的合适材料,但关于直接时效工艺对蠕变性能和疲劳裂纹扩展速率等的影响还需开展更多的工作。
2.3 长期时效过程中的第二相演变规律
Tang等[29,38]分别对快速凝固和锻造态Allvac 718Plus合金进行了高温长期时效(包括704和760 ℃)后组织演变分析。经三联熔炼、均匀化热处理和锻造后,采用标准化热处理工艺处理得到锻造态合金[38]。快速凝固合金则通过将锻造态合金熔化为熔体,采用熔体旋转法制备而成[29]。快速凝固合金由大量等轴晶粒组成,平均尺寸约为4.7 μm (ASTM 12~13),无明显的第二相析出[29];锻造态合金主要由均匀的再结晶晶粒组成,平均尺寸约为8.0 μm (ASTM 10~11),其中γ′相的尺寸为(35.5 ± 6.7) nm,η相的体积分数为(4.0 ± 0.5)%[38]。Allvac 718Plus合金中γ′相的粗化符合LSW理论[13],即γ′相半径的三次方与保温时间成正比。2种试样在不同温度下的γ′相粗化速率如表3[29]所示。关于长期时效对快速凝固合金中第二相析出的影响,研究结果表明:试样中较高的位错密度可有效促进固溶原子的扩散,γ′相粗化速率明显高于锻造态合金;试样在704 ℃保温50 h后在γ′/γ界面处析出了γ″相,形成了γ″/γ′、γ″/γ′/γ″和γ′/γ″/γ′的复合结构,如图6[29]所示,这是由于更高的固溶原子扩散速率导致γ′/γ界面处能快速达到促使γ″相形成所需的Nb含量阈值。经200 h长期时效后,704和760 ℃试样中均有δ相析出,δ相的析出与快速凝固试样中较高的Nb含量有关,促进δ相析出的Nb含量为6%~8%。经1000 h长期时效后,760 ℃试样中在δ/γ界面处析出了η相和σ相,η相的析出与δ相中较低的Al固溶度有关,而富Cr σ相的析出则与Cr在δ/γ和η/γ相界面处的偏析有关,如图7[29]所示。
表3 快速凝固和锻造态Allvac 718Plus合金在704和760 ℃长期时效的γ′相粗化速率[29] (nm3·h-1)
Table 3
State of Allvac 718Plus alloy | 704 oC | 760 oC |
---|---|---|
Rapidly-solidified | 14.4 | 83.2 |
Forged | 08.7 | 64.4 |
图6
图7
图7
快速凝固Allvac 718Plus合金经760 ℃、1000 h长期时效后形成的δ、η和σ相[29]
Fig.7
Bright-field TEM image showing the η phase, δ phase, and σ phase in the rapidly-solidified Allvac 718Plus alloy after the thermal exposures of 760 oC for 1000 h (a), the corresponding selected area electron diffraction (SAED) patterns (b, c), elemental maps images (d), and elemental line-scanning results from TEM-EDS spectrum (e)[29]
相较于快速凝固合金,锻造态合金在长期时效过程中表现出不同的组织演变特征,除了更慢的γ′相粗化速率,还包括无γ″相的析出以及经704 ℃、200 h或760 ℃、500 h长期时效后,富Cr的σ相在η/γ相界面处的析出,其主要原因推测为:长期时效前,组织中存在的η相已消耗大量Nb原子,并将大量Cr原子排斥至η/γ相界面。前者降低了γ基体中的Nb含量,显著增加了γ″相形核所需的时效时间;后者则加速了σ相的析出动力学,使σ相在η/γ相界面处的析出速率比快速凝固合金更快。此外,对经不同长期时效热处理后锻造态合金的室温和高温(704 ℃)拉伸性能的测试结果(表4[38])表明,γ基体的拉伸变形机制主要受温度影响,室温下以滑移为主,高温下以层错和孪生为主,如图8[38]所示,γ′相明显粗化((35.6 ± 6.8) nm→(83.6 ± 18.8) nm),促使其室温沉淀强化机制由位错切过转变为Orowan绕过和超晶格层错切过的混合机制,高温沉淀强化机制则由位错切过转变为超晶格层错切过机制;γ′相的明显粗化导致拉伸变形机制改变,从而引起室温和高温下的屈服强度和最终拉伸强度的降低;而长期时效后在γ/η界面析出的σ相恶化了室温拉伸塑性,但对拉伸强度的影响有限。
表4 锻造态Allvac 718Plus合金经704和760 ℃长期时效后的组织参数及相应室温和高温拉伸性能[38]
Table 4
Heat treatment | γ′ size | VF of σ | 25 oC | 704 oC | ||||
---|---|---|---|---|---|---|---|---|
nm | % | YS / MPa | UTS / MPa | El / % | YS / MPa | UTS / MPa | El / % | |
As-cast | 35.5 ± 6.7 | - | 1156.48 | 1493.14 | 14.53 | 953.02 | 1069.00 | 15.23 |
704 oC, 100 h | 35.6 ± 6.8 | - | 1247.95 | 1614.82 | 14.35 | 987.05 | 1124.90 | 16.61 |
704 oC, 200 h | 36.5 ± 7.2 | - | 1236.30 | 1611.22 | 14.44 | 988.90 | 1126.05 | 11.57 |
704 oC, 500 h | 39.9 ± 7.3 | 0.36 | 1217.46 | 1594.99 | 13.81 | 981.76 | 1104.97 | 19.34 |
704 oC, 1000 h | 47.5 ± 8.8 | 1.97 | 1224.04 | 1581.43 | 11.78 | 969.42 | 1072.54 | 21.09 |
760 oC, 100 h | 50.1 ± 8.7 | - | 1035.34 | 1410.07 | 17.58 | 848.89 | 0956.40 | 18.62 |
760 oC, 200 h | 53.8 ± 10.6 | 1.14 | 1014.98 | 1384.67 | 13.93 | 806.55 | 0927.82 | 24.82 |
760 oC, 500 h | 65.7 ± 13.9 | 2.63 | 0967.70 | 1346.90 | 11.38 | 766.01 | 0855.39 | 22.93 |
760 oC, 1000 h | 83.6 ± 18.8 | 3.82 | 0855.11 | 1236.68 | 07.60 | 748.99 | 0874.90 | 30.35 |
图8
图8
经704 ℃、100 h和760 ℃、1000 h长期时效后锻造态Allvac 718Plus合金的室温和高温(704 ℃)沉淀强化机制[38]
Fig.8
Schematics showing the tensile precipitation-strengthened mechanisms at room temperature (a, b) and elevated temperature (c, d) of the forged Allvac 718Plus alloy after the long-term thermal exposures of 704 oC, 100 h (a, c) and 760 oC, 1000 h (b, d) samples[38]
此外,Guo等[28]指出在锻造态Allvac 718Plus的标准热处理过程中,采用固溶后炉冷至时效温度的方式可以加速γ″相在长期时效过程中的析出,并促进三明治结构和紧密结构的γ″/γ′/γ″的形成。在长期时效过程中,γ″相首先在γ′/γ界面一侧析出,随着时效时间的延长,γ″相逐渐在γ′/γ界面其他侧析出,并先后形成半包围的三明治γ″/γ′/γ″复合结构和全包围的紧密γ″/γ′/γ″结构,如图9[28]所示。γ″/γ′/γ″复合结构的析出有利于抑制γ′相的粗化,可有效提高合金的组织稳定性。刘永长等[5]也指出获得热稳定性优异的γ″-γ′复合结构是实现变形镍基高温合金更长时服役的新策略。总而言之,促进γ″相析出的因素同时也是促使γ′粗化的因素,如更高的位错密度和更长的时效时间等,因此如何在确保γ′相不过度粗化的情况下形成γ″/γ′/γ″复合结构仍是开展相关研究工作的重要难题。
图9
图9
经固溶处理后炉冷至时效温度的锻造态Allvac 718Plus在长期时效过程中γ″/γ′复合结构的演变示意图[28]
Fig.9
A qualitative model schematic illustration directly showing the evolution of γ″/γ′ coprecipitates[28]
(a) all evolution process in forged Allvac 718Plus alloy during long-term thermal exposures at 705 oC
(b) the evolution from γ′ to sandwich-γ″/γ′/γ″ coprecipitates
(c) the evolution from sandwich-γ″/γ′/γ″ coprecipitates to partly compact-γ″/γ′ coprecipitates
(d) the evolution from sandwich-γ″/γ′/γ″ coprecipitates and partly compact-γ″/γ′ coprecipitates to all compact-γ″/γ′/γ″ coprecipitates
3 第二相析出对Allvac 718Plus高温合金性能的影响
如前所述,Allvac 718Plus合金是以γ′相为主要强化相的沉淀强化型合金,γ′相的析出特征,如尺寸、体积分数和形貌等,是决定合金性能的关键因素[56]。热处理或服役过程中生成的η相和TCP相等其他第二相同样对合金性能具有重要影响。Allvac 718Plus合金中η相的体积分数、析出位置和析出取向均会影响合金的抗疲劳性能。Viskari等[57]指出晶界η相有助于形成贫γ′区,相比于γ′密集区域,贫γ′区具有更好的塑性,从而导致合金具有更低的疲劳裂纹扩展速率,并以穿晶方式发生断裂;而在缺乏晶界η相时,合金则更易发生沿晶断裂。Wang等[58]发现晶粒尺寸对合金抗疲劳性能的影响与η相在晶界的析出相关。在ASTM 5.5~ASTM 10的范围内,合金的疲劳裂纹扩展速率随着晶粒尺寸的减小而降低,主要是由于晶界η相析出的增加,减少了晶界氧的扩散,并增加了二次裂纹扩展路径。Kirchmayer等[59]则认为合金晶粒尺寸的大幅增加会降低晶界密度,从而减少高温下疲劳裂纹扩展的可能路径,导致裂纹沿晶界偏转,有助于提高合金的高温抗疲劳性能。这种现象与高温氧化导致的晶界脆化有关,基本仅在空气氛围中出现。此外,η相体积分数和晶粒尺寸的变化也能使疲劳裂纹扩展速率降低1个数量级,而合适的η相取向可以使疲劳裂纹扩展速率至少降低2个数量级[59]。
Qi等[9]对比了Allvac 718Plus锻造盘不同区域的微观组织和高温疲劳行为,并研究了其高温疲劳机制,结果表明:锻造盘中心部位的晶粒尺寸比边缘部位更小;大部分η相以短棒状在晶界处析出,锻造盘边缘部位的η相体积分数高于中心部位;γ′强化相的析出规律没有明显差异,均以球状形态在基体中均匀分布。在704 ℃下疲劳变形时,锻造盘的中心和边缘部位在循环变形初期均表现出循环软化现象,并具有相似的循环应力响应行为。然而,晶粒尺寸较小的疲劳试样(来自锻造盘中心部位)具有较长的疲劳寿命和较高的初始循环应力幅,但具有较差的抵抗循环变形能力。此外,η相的取向对疲劳裂纹扩展路径有显著影响,当η相沿晶界平行或近似平行排列时,裂纹倾向于沿晶扩展,而粒状和向晶内延伸生长的η相则在一定程度上阻碍了晶间裂纹的扩展,这是促使合金发生穿晶断裂的主要因素[9]。
合金中强化相的尺寸和种类同样会影响其抗疲劳性能。长期时效[51~53,60]后,γ′相的粗化和γ″相的析出会明显降低合金的疲劳裂纹扩展速率,从而提高合金的抗疲劳性能。Tsang等[52,61]指出,在经649和704 ℃长期时效后,Allvac 718Plus合金的平均疲劳裂纹扩展的门槛值(649 ℃下为8.8~10.4 MPa·m1/2,704 ℃下为10.1~11.6 MPa·m1/2)均高于Waspaloy合金(649 ℃下为6.1~7.5 MPa·m1/2,704 ℃下为6.6~7.7 MPa·m1/2),说明Allvac 718Plus的长期应用性明显高于Waspaloy合金。这主要是因为Waspaloy合金中只有γ′相析出,Allvac 718Plus合金在长期时效时还会形成γ″相[52]。然而,强化相对合金抗疲劳性能的影响机制尚不明确,仍需继续开展相关研究工作。
除了通过热处理调控组织以改善合金抗疲劳性能外,合金表面处理也是提高其抗疲劳性能的有效手段。Kattoura等[62~65]采用超声波纳米晶体表面改性 (ultrasonic nanocrystal surface modification,UNSM)技术和激光冲击喷丸(laser shock peening,LSP)技术对Allvac 718Plus合金表面进行处理,并测试了室温和高温下的抗疲劳性能。结果表明:UNSM和LSP处理均会在合金表面引起严重的塑性变形、高强度的残余应力和高硬化,并促使纳米级晶粒及其附近高密度位错的形成;纳米晶粒和高密度位错为位错运动到表面产生了障碍,从而阻碍了表面疲劳裂纹的成核和扩展,有效提高了合金的疲劳寿命;与未经处理的合金相比,经UNSM处理的合金在室温下的疲劳裂纹扩展速率降低约66%,在高温(650 ℃)下的疲劳裂纹扩展速率降低约60%,而经LSP处理的合金在高温(650 ℃)下的疲劳裂纹扩展速率降低约72%。
沉淀强化型高温合金在高温时效和服役期间,γ′相会发生粗化和长大,其快速粗化会显著降低合金的蠕变抗力[56,66]。Chen等[67]研究了Allvac 718Plus合金在不同温度(650~750 ℃)和不同应力(280~800 MPa)下的蠕变行为,结果表明:γ′相的快速生长和η相的粗化是合金在750 ℃下蠕变强度快速降低和产生蠕变孔洞的主要原因,蠕变孔洞的平均尺寸随着γ′相和η相的粗化而增加,这2种相的生长和粗化会为孔洞的形核提供更多位点,并促进孔洞生长。Pr
Alabbad等[71]和Hassan等[72]指出低体积分数的η相在晶界处的不连续析出会导致晶界锯齿化,而锯齿状晶界具有较高的抗晶界滑动和裂纹扩展能力,有助于提高蠕变寿命。Wang等[41]指出过量η相的析出会导致γ′相含量降低,从而弱化基体强度,降低蠕变抗力。Unocic等[73]对比了干燥和湿润环境中Allvac 718Plus合金抵抗晶界蠕变开裂的能力,结果表明:完全再结晶组织在2种环境中均易发生晶界脆性开裂;蠕变裂纹主要沿高角度晶界扩展,而Σ3孪晶界会与高角度晶界竞争O,降低高角度晶界上的O含量,进而阻碍晶界脆化;此外,晶界η相的析出对晶界O含量基本无影响,因此对晶界脆化开裂既无促进也无抑制作用。
综上所述,晶界η相的析出通过影响疲劳裂纹扩展路径而影响合金的抗疲劳性能。适量体积分数和特定取向的η相有利于阻碍合金疲劳裂纹沿晶界扩展,而γ′相的粗化和γ″相的析出促使合金在长期时效后的抗疲劳性能反而上升。目前尚无相关研究及证据对此现象进行分析,初步推测可能与γ″-γ′复合结构的形成有关。此外,高密度且细小的γ′相是合金抗蠕变性的主要来源,适量的η相能诱导晶界锯齿化,从而阻碍蠕变裂纹扩展。
4 第二相析出对Allvac 718Plus合金可焊性的影响
应变时效裂纹是沉淀强化镍基合金中特有的裂纹,通常发生在焊(熔焊)后热处理过程中的热影响区晶界处,是影响合金可焊性的主要原因,而强化相析出速率是控制应变时效开裂敏感性的关键因素[3,4]。典型的γ′相沉淀强化镍基合金,如Waspaloy合金等,具有较快的γ′析出动力学,这使得焊后热处理时γ′析出过快,导致晶内相对强化,从而使晶界承受过大应变而发生开裂[74,75]。自Inconel 718合金优化而来的Allvac 718Plus合金虽然主要由γ′相强化,但保留了Inconel 718合金的高Nb含量(> 5%)。高含量的Nb可明显降低γ′相的沉淀速率,因此Allvac 718Plus合金的应变时效开裂抗性明显优于其他γ′相沉淀强化镍基合金。作为一种新开发的高温合金,有关Allvac 718Plus合金焊件的相关研究较少且主要集中在使用的熔焊技术(如电弧焊接技术和电子束焊接技术)。
Asala等[27,76]和Andersson等[77]指出,电弧焊过程中产生的较大残余应力会显著增加Allvac 718Plus合金的应变时效开裂倾向,因此,必须采用适当的焊接热输入来减少残余应力。相比之下,电子束的能量密度高于当前所有其他热源,以此为焊接热源的电子束焊接技术具有明显优势,主要体现在其功率密度大、热量集中且热输入低,因此熔凝过程较快。一方面减少了熔合区中Laves有害相的尺寸和含量[78],另一方面,热影响区小且变形少,可有效抑制热影响区晶粒的长大,并减少后续热处理时应变时效开裂的风险[79]。Vishwakarma等[80]采用电子束焊技术连接的Allvac 718Plus焊件不易开裂的主要原因是电子束焊产生的残余应力较小,这进一步降低了合金的应变时效开裂倾向。然而,即使采用电子束焊技术,焊后热处理时仍需使用较高的加热速率,以迅速跨过γ′相的快速析出温度区间。除了γ′相的析出和残余应力的大小与焊后热处理的开裂有关,Idowu[81]指出Allvac 718Plus合金焊后热处理开裂的发生还与热影响区晶界处的Laves相和η相有关。通过焊前热处理控制冶金反应,例如消除Laves相以避免晶界液化导致的晶界脆性,可以进一步降低Allvac 718Plus合金对焊后热处理开裂的敏感性。Singh等[82]同样指出,尽管η相可以钉扎热影响区晶界,限制晶粒生长,但同时也会促进晶界液化,从而增加合金的热裂纹敏感性[27,76,77]。
晶界处Laves相和η相的液化不仅会影响Allvac 718Plus合金焊后开裂倾向,还与焊接过程中凝固裂纹和热影响区裂纹的产生密切相关,且这2种裂纹的产生同样是实现Allvac 718Plus焊接件广泛应用的主要障碍之一。Mei等[83]指出,优化焊接参数改善焊前组织是避免镍基合金在焊接过程中发生熔合区和热影响区开裂的有效手段。Singh和Andersson[84]对铸态Inconel 718和Allvac 718Plus合金进行了可变拘束焊接测试,结果表明:熔合区的开裂与母材组织无关,主要受合金凝固温度范围的影响,但热影响区的开裂与母材组织密切相关。Hanning等[85,86]和Andersson等[87]指出,通过对锻造态Allvac 718Plus合金进行焊前均匀化热处理,可以降低但保留适量的Laves相,从而显著降低热影响区的开裂现象,主要机制为:晶界处B元素的偏析和Laves相的组分液化虽然会导致热影响区在初始阶段发生晶界开裂,但熔化后的Laves相会继续回填晶界,从而减少焊后热影响区的总裂纹长度。Andersson等[88]指出Allvac 718Plus合金的电子束焊组织中无明显开裂,但在熔合区顶部、根部和热影响区存在裂纹回填,热影响区的裂纹回填是由于η相发生了组分液化,而不是通过固态扩散方式回溶基体。Idowu等[89]还指出B元素的偏析也会导致电子束焊过程中热影响区的晶界液化,但通过选择合理的焊前热处理工艺,可以获得无裂纹的Allvac 718Plus电子束焊件。
综上所述,Allvac 718Plus合金具有比其他γ′沉淀强化型合金更低的γ′析出速率,因而具有较好的可焊性。采用高能量的电子束焊接技术,并控制合金组织中Laves相和η相的含量,不仅可以进一步降低合金的应变时效开裂倾向,且更容易获得无裂纹的Allvac 718Plus焊件。目前,关于Allvac 718Plus合金焊件的研究仍较少,如何通过焊接参数的选择以及焊前和焊后热处理工艺的设计实现Laves有害相的控制与消除等方面仍需研究。
5 结论和展望
(1) Allvac 718Plus合金中基体相为γ相,主要强化相为γ′相,主要晶界相为η相。此外,组织中还存在少量MX碳氮化物、γ″相和δ相,以及Laves相和σ相等TCP有害相。其中,γ″相的析出与Nb元素的偏析有关,通常在γ′/γ界面处形核;δ相主要以几个原子层的厚度与η相协同析出,以适应局部化学成分变化。Cr元素的偏聚会导致Laves有害相在凝固过程中的形成,同时也会促进Laves相和σ相在γ/η界面处的形成。
(2) Allvac 718Plus合金中各相的析出和演变对合金的高温性能和热稳定性具有重要影响。作为主要强化相的γ′相和主要晶界相的η相是影响合金高温强度、抗疲劳和抗蠕变性能的主要第二相,探究其对合金性能的影响机理对于实现合金性能的进一步优化具有重要的指导意义。此外,合金中γ″-γ′复合结构的形成有助于提高合金的组织稳定性,是实现变形镍基高温合金更长时服役的新策略。
(3) 通过热处理调控Allvac 718Plus合金的第二相组织,是优化其性能的重要手段。热处理过程中,第二相的析出与演变十分复杂,与初始组织、热处理温度、时间和冷却速率等因素有关。明确合金在热处理过程中的第二相演变规律,有助于选择适当的热处理工艺,促使密度更高且细小弥散的γ′相和适量η相的析出,从而实现合金抗缺口敏感性、抗蠕变性能、抗疲劳性能和拉伸强度的最佳组合。
(4) Allvac 718Plus合金因其较高的Nb含量而具有较低的γ′相析出速率,因而具有较好的可焊性。通过调控焊接前Laves相和η相的含量,能显著降低合金的应变时效开裂倾向,并有效避免焊接过程中的裂纹形成。
(5) 目前,针对Allvac 718Plus合金在热处理工艺优化、高温性能和焊接性能等方面已取得一定的研究成果,但在更优异组织的构建和焊接工艺的优化等方面亟需开展工作,主要包括:一是探究γ″-γ′复合结构形成机制、高温稳定性及其独特的高温强化机制;二是优化合金的焊接工艺,探明焊接组织演变行为及其对焊接性能的影响。这些研究将有助于实现合金性能的进一步提高,对推动其在航空发动机等领域的广泛应用具有重要意义。
参考文献
Recent development of triple melt GH4169 alloy
[J].The breakthrough application of triple melt technology (vacuum induction melting (VIM) + electroslag remelting (ESR) + vacuum arc remelting (VAR)) for fabricating GH4169 alloy facilitated the optimization of the entire production process of GH4169 disks. This paper summarizes the research progress on the chemical composition, triple melting, homogenization treatment, cogging, disk forging, residual stress control, and quality control system of GH4169 alloy. The breakthrough and large-scale application of triple melting technology have resulted in improved purity of the GH4169 alloy and reduced occurrence probability of metallurgical defects. In addition, the microstructural uniformity and yield of forging bars have been improved by the combination of fast (upsetting and drawing) and radial forging. Furthermore, deformations occurring during the machining and operation of GH4169 disks have been reduced using residual stress control technology. Results related to ultrahigh strength, ultralarge scale, high corrosion resistance, and hydrogen embrittlement characteristics of GH4169 alloy are discussed, and potential future research directions are outlined here.
三联冶炼GH4169合金研究进展
[J].三联冶炼技术的突破促进了我国GH4169合金盘锻件全流程制备技术的优化。本文综述了GH4169合金的化学成分、三联冶炼技术、开坯技术、锻造技术、残余应力控制、质量控制体系等方面的研究进展。三联冶炼技术的突破提高了GH4169合金的纯净度,降低了冶金缺陷概率;镦拔+径锻联合开坯提高了GH4169合金棒材组织均匀性和成材率;残余应力控制技术降低了GH4169合金盘件加工和服役过程中的变形量。此外,本文讨论了GH4169合金在超高强度、超大尺寸、高耐蚀性能和抗氢脆等研究中存在的难题,并对未来工作方向进行了展望。
Recent progress in research and development of nickel based single crystal superalloys
[J].
镍基单晶高温合金的研发进展
[J].
Recent progress of microstructure evolution and performance of multiphase Ni3Al-based intermetallic alloy with high Fe and Cr contents
[J].Owing to the high temperature resistance, excellent high temperature oxidation and corrosion resistance, low density and production cost, Ni3Al-based intermetallic alloys have broad applications and attract much attention. In order to widen the application field of the Ni3Al-based superalloy, it is urgently important to improve the high-temperature performance on the basis of good weldability. Under this background, in the composition design of Ni3Al alloy, the high Fe and Cr contents can effectively enhance the phase composition and weldability of Ni3Al-based intermetallic alloys. Based on this, the microstructural characterization and phase separation sequences during solidification of a newly designed multiphase Ni3Al-based intermetallic alloy modified with high Fe and Cr elements are analyzed. On account of the typical solidification structure of the multiphase Ni3Al-based intermetallic alloy comprising γ'+γ dendrite, interdendritic β and γ'-envelope, etc., the microstructural evolutions of the alloy under different solution cooling rates, high temperature annealing, and long-term ageing processes are summarized. The effects of its corresponding complex microstructural variables (size of primary γ' phase, morphology of β, phase evolution in the interior of β, widening of γ'-envelope) on the creep behaviors of the multiphase Ni3Al-based intermetallic alloy are systematically discussed. Recent advances in welding and joining of multiphase Ni3Al-based intermetallic alloy are summarized, and the development of multiphase Ni3Al-based intermetallic alloy is also prospected.
高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展
[J].
Recent progress on evolution of precipitates in Inconel 718 superalloy
[J].
Inconel718高温合金中析出相演变研究进展
[J].Inconel 718高温合金广泛应用于航空、航天、电力和国防等领域中复杂金属结构构件的制造, 其高温抗疲劳性能和蠕变持久强度与成形加工过程中微观组织的演变密切相关. 以往的研究侧重于镍基合金热加工(如定向凝固、热处理、锻造和焊接等)工艺参数的优化, 较少从析出相控制的角度来阐明冷轧、热变形、焊接等工艺与高温服役性能之间的内在联系. 本文介绍了该合金中不同类型的析出相, 包括: 主要强化相(γ'' 相)、辅助强化相(γ' 相)、γ'' 相的平衡相(δ相), 以及MX型碳氮化物和Laves相; 论述了镍基合金制备过程中不同类型析出相的析出机制及其对合金高温性能的影响; 指出了镍基合金高能电子束焊接过程中, 焊接热影响区微裂纹形成的影响因素.
Microstructure evolution of Inconel 718 superalloy during hot working and its recent development tendency
[J].Here some critical issues existed during forging process of Inconel 718 disks involving recrystallization mechanisms, grain growth, δ-phase morphology control and residual stress are explained. Based on the potential application prospect of selective laser melting in additive manufacture of aerocraft engine components, the specialized anisotropic microstructure and mechanical performance resulted from the rapid solidification process in selective laser melting are analyzed. Furthermore, the importance and difficulty of heat treatment in eliminating Laves-phase as well as tailoring substructure and related mechanical behavior are also discussed. The deformation mechanisms of Inconel 718 alloy at high temperature are illustrated in detail, comprising of dislocation planar slip, twinning and dislocation-shearing γ″ precipitates in complex modes. At last, a newly developed wrought nickel superalloy (Allvac 718Plus, with a increase in service temperature of 55 ℃ as compared to that of Inconel 718) is introduced, and some recent progresses aimed at modifying chemical compositions and phase compositions to improve service temperature on the basis of Inconel 718 alloy are also reviewed. The results indicate that the more stable γ″-γ' composite structure is important for the further design of next-generation wrought nickel superalloys.
Inconel 718变形高温合金热加工组织演变与发展趋势
[J].本文首先针对Inconel 718合金的锻造工艺过程,较为系统地阐述了合金高温变形时的再结晶机制、晶粒长大、δ相形态控制以及存在的残余应力问题。基于选区激光熔化技术在航空发动机材料增材制造领域的潜在优势和应用前景,分析了选区激光熔化技术制造Inconel 718合金凝固组织和性能的各向异性,探讨了热处理工艺在消除有害相、改变组织结构及力学行为等方面的重要作用和局限性。结合高温服役过程的组织演变,分析了Inconel 718合金变形时涉及位错滑移、孪生、γ″相剪切方式的变形机制。最后,介绍了通过调整Inconel 718合金成分来改变强化相结构,从而进一步提高变形高温合金服役温度的有效尝试(如Allvac 718Plus合金的服役温度提高了55 ℃),指出了通过成分调整来获得热稳定性优异的γ″-γ'复合析出结构是新型变形镍基高温合金的重要发展方向。
Research progress of wrought superalloys in China
[J].Wrought superalloys are high temperature alloys produced by casting-forging-hot rolling-cold drawing, including disc, plate, bar, wire, tape, pipe etc. These products are widely used in aviation, aerospace, energy, petrochemical, nuclear power and other industrial fields. In this paper, domestic progress of wrought superalloys in recent ten years was reviewed, including advances in fabrication process, research in new alloys (GH4169G, GH4169D, GH4065 and GH4068 alloy et al.) and new techniques (deforming of FGH4096 alloy, nitriding of NGH5011 alloy and 3D printing of In718 alloy et al.).
国内变形高温合金研制进展
[J].变形高温合金是指通过铸造-变形工艺生产的高温合金,包括盘、板、棒、丝、带、管等产品,该类产品广泛用于航空、航天、能源、石化、核电等工业领域。本文介绍了国内变形高温合金近10年的最新进展,分别从变形高温合金的制备工艺流程,GH4169G、GH4169D、GH4065、GH4068等新合金的研制,以及FGH4096的变形化、NGH5011的氮化、In718合金的3D打印等新技术3个方面展开论述。
Evaluation on elevated-temperature stability of modified 718-type alloys with varied phase configurations
[J].Inconel 718 is a Ni-Fe-based superalloy widely used in aerospace engines because of its excellent mechanical properties. However, the inferior stability of the gamma '' phase limits the application of Inconel 718, which coarsens rapidly at temperatures greater than 650 degrees C. Further improving the temperature tolerance of Inconel 718 requires optimization of the phase configuration via modification of the alloy's chemical composition. Given the aforementioned objective, this work was conducted to study the precipitation behavior and thermal stability of the strengthening phases with various structures in modified Inconel 718 alloys by tailoring the Al/Ti ratio. With increasing Al/Ti ratio, three particle configurations were formed: gamma '/gamma '' composite, isolated gamma ', and gamma '/gamma ''/gamma ' composite particles. The results of aging tests demonstrate that the isolated gamma ' and the gamma '/gamma ''/gamma ' composite structure exhibited better thermal stability at temperature as high as 800 degrees C. The isolated gamma ' exhibited a reduced coarsening rate compared with the gamma '/gamma ''/gamma ' composite particles because the isolated gamma ' phase was rich in Al, Ti, and Nb. However, the gamma '/gamma '' composite particles coarsened and decomposed rapidly during aging at temperatures greater than 700 degrees C because of the lower stability resulting from the larger number of gamma '' particles. The obtained results provide necessary data for the compositional optimization of novel 718-type alloys.
Precipitate coarsening and its effects on the hot deformation behavior of the recently developed γ'- strengthened superalloys
[J].
On the microstructure evolution during low cycle fatigue deformation of wrought ATI 718Plus alloy
[J].
The precipitation of η phase during the solution treatments of Allvac 718Plus
[J].
Integrated simulation of the forging process for GH4738 alloy turbine disk and its application
[J].In order to control the grain size of forged turbine disk of wrought superalloy like GH4738 more effectively, constitutive equations and grain structure evolution models of GH4738 alloy are used in Deform 3DTM for achieving integrated simulation of whole forging process of GH4738 alloy turbine disk (from preheating billet for upsetting to die forging). By using of integrated simulation, the variation of temperature, average grain size, etc., during the whole forging process has been explored, making it possible to control these parameters quantitatively. Comparing with traditional simple stage simulation, results of integrated simulation are more consistent with corresponding experimental results of forged turbine disk (300 mm in diameter). Therefore, the reliability of the integrated simulation is verified. Finally, with the application of integrated simulation, GH4738 alloy turbine disk with a diameter of 1450 mm has been successfully forged by 8×104 t forging press. This work provides a more practical simulation method for helping the process design of forging large turbine disk.
GH4738合金涡轮盘锻造过程的集成式模拟及应用
[J].基于GH4738合金的热流变应力模型及晶粒组织演变模型, 提出并实现了利用Deform 3DTM软件对该合金涡轮盘从自由锻前预热直至模锻完成的整个锻造过程的集成式模拟. 借助集成式模拟实现了对锻件在整个锻造过程中温度、平均晶粒尺寸等参数的定量控制. 同时采用直径300 mm涡轮盘的实际锻造结果验证了所用模型和该模拟方法的可靠性. 最后, 把集成式模拟运用于直径1450 mm涡轮盘盘件的锻造过程模拟, 并根据模拟优化方案在8×104 t锻压机下成功锻制直径1450 mm涡轮盘盘件. 为大型变形高温合金涡轮盘的锻造成型提供了工艺优化的理论依据和研究方法.
Enhancing tensile properties of wrought Ni-based superalloy ATI 718Plus at elevated temperature via morphology control of η phase
[J].
Precipitates evolution and tensile behavior of wrought Ni-based ATI 718Plus superalloy during long-term thermal exposure
[J].
Research progress of alloy ATI 718Plus in China
[J].
ATI 718Plus合金国内研究进展
[J].
Polytypic transformations in Laves phases
[J].
Microstructural analyses of ATI 718Plus® produced by wire-ARC additive manufacturing process
[J].
The influence of solution temperature on microstructure evolution and mechanical properties of ATI 718Plus repaired by wire and arc additive manufacturing
[J].
On the crystallography and composition of topologically close-packed phases in ATI 718Plus®
[J].
Grain-boundary precipitation in Allvac 718Plus
[J].
Thermodynamic stability and electronic structure of η-Ni6Nb(Al, Ti) from first principles
[J].
Pseudobinary phase diagrams of eutectic reaction for Pt-containing and Pt-free 718Plus alloys
[J].
The effect of boron and zirconium on wrought structure and γ-γ′ lattice misfit characterization in nickel-based superalloy ATI 718Plus
[J].
Experimental determination of TTT diagram for alloy 718Plus®
[A].
A review on 718Plus, the new superalloy: Performance, aerospace application and development trend
[J].
新型高温合金718Plus的性能特点、航空应用和发展趋势
[J].
Precipitation behavior during high-temperature isothermal compressive deformation of Inconel 718 alloy
[J].
Correlation between local chemical composition and formation of different types of ordered phases in the polycrystalline nickel-base superalloy A718Plus
[J].
Precipitation behavior of γ′ precipitates in the fusion zone of TIG welded ATI 718Plus®
[J].
A new type-γ′/γ′′ coprecipitation behavior and its evolution mechanism in wrought Ni-based ATI 718Plus superalloy
[J].
Precipitation behaviors of the rapidly-solidified Allvac 718Plus superalloy during aging treatment
[J].
Structure stability study on a newly developed nickel-base superalloy-Allvac® 718Plus™
[A].
Effect of the precipitation of the η-Ni3Al0.5Nb0.5 phase on the microstructure and mechanical properties of ATI 718Plus
[J].
Evolution of secondary phases in alloy ATI 718Plus® during processing
[A].
On the precipitation of delta phase in ALLVAC® 718Plus
[J].
Precipitation sequences in rapidly solidified Allvac 718Plus alloy during solution treatment
[J].Allvac 718Plus alloy is a compromising Ni-based superalloy at elevated-temperature of 704 °C, due to its combination of good mechanical properties and excellent structure stability. The precipitation behaviors during heat treatment in Allvac 718Plus alloy processed by rapid solidification technique were systematically investigated in this work. The evolution of secondary phases in rapidly solidified (RS) 718Plus alloy during annealing at 960 °C is: η + MC in 1 h, η + MC + Laves (C14) in 6 h, and MC + Laves (C14) in longer duration. The growth and dissolution behaviors of η phase are evidenced in RS samples and different types of dislocations at the η/γ interface are characterized. Based on these experimental observations, we examine the transformation mechanisms of γ→η and η→γ, which are related to the formation of stacking faults (SFs) with a $\frac{1}{6}{{\left[ 211 \right]}_{\gamma }}$ Shockley partial dislocation and the climbing of $\frac{1}{4}{{\left[ 0001 \right]}_{\eta }}$ edge dislocations at the η/γ interface, respectively. Both MC and Laves (C14) phases are enriched in Nb and Mo, with a higher level of Ti in MC carbides and Cr in the Laves (C14) phase. The precipitation of MC carbides is driven by the high concentration of C atoms in γ-matrix, while the Cr segregation promotes the later nucleation of Laves (C14) phase in γ-matrix around MC carbides, which is due to the Cr atoms rejection from MC carbides into the matrix.
Improved dynamic impact behaviour of wire-arc additive manufactured ATI 718Plus®
[J].
Hot cracking of Allvac 718Plus, Alloy 718 and Waspaloy at varestraint testing
[A].
Application of analytical electron microscopy and FIB-SEM tomographic technique for phase analysis in as-cast Allvac 718Plus superalloy
[J].
Precipitation and tensile behaviors of Allvac 718Plus superalloy during long-term thermal exposure
[J].
The effect of Aluminum on microstructure and mechanical properties of ATI 718Plus alloy
[J].
The effects of solutionizing temperature on the microstructure of Allvac 718Plus
[J].A study of the microstructural evolution of a Ni-based superalloy, Allvac 718Plus, in the forged condition, was performed by varying the solutionizing temperature. Different solutionizing temperatures were chosen to obtain different fractions of the gamma prime (Ni-3(Al,Ti,Nb), gamma ') and delta (Ni3Nb, delta) precipitates. The solutionizing temperatures ranged between 954 to 1100 degrees C based on the solvus temperature of the gamma ' phase. The 954 degrees C solutionizing treatment resulted in incomplete dissolution of the gamma ' phase and a relatively high-volume fraction of the delta phase, which formed preferentially at grain boundaries. The gamma ' phase was completely dissolved during each of the other three solutionizing treatments (1000, 1050, and 1100 degrees C), while the fraction of the delta phase decreased with increasing solutionizing temperature. The 1100 degrees C solutionizing treatment led to significant grain growth of the matrix gamma phase. After solutionizing, the samples were subjected to a standard two-step aging treatment (788 degrees C for 8 h followed by 704 degrees C for 8 h) to see the relative effect of the solutionizing on the precipitation during aging.
The influence of Δ phase on mechanical properties of ATI 718Plus alloy
[A].
Evolution of microstructure and mechanical properties of ATI 718Plus® superalloy after graded solution treatment
[J].
The microstructure of heat-treated nickel-based superalloy 718Plus
[J].
Effect of solution cooling rate on microstructure evolution and mechanical properties of Ni-based superalloy ATI 718Plus
[J].
Microstructural investigation of thermally aged nickel-based superalloy 718Plus
[J].
Transmission electron microscopy of single and double aged 718Plus superalloy
[J].
Application of direct aging to Allvac® 718Plus™ alloy for improved performance
[A].
Influence of high-temperature exposure on the microstructure of ATI 718Plus superalloy studied by electron microscopy and tomography techniques
[J].
Reduced dwell-fatigue resistance in a Ni-base superalloy after short-term thermal exposure
[J].
Tensile and creep strength of thermally exposed allvac 718Plus
[A].
Microstructural effects on the mechanical properties of ATI 718Plus® alloy
[J].
Effect of composition and microstructure on the fatigue and creep-fatigue behaviour of Allvac 718Plus alloy
[J].
Effect of thermal treatment on the fatigue crack propagation behavior of a new Ni-base superalloy
[J].
Thermal stability characterization of Ni-base ATI 718Plus® superalloy
[A].
Influence of interrupted ageing on the temporal evolution of the γ′ size distribution and the co-precipitation of γ″ in alloy 718Plus
[J].
The effect of aluminium and titanium on the microstructure and mechanical properties of an iron-base alloy
[J].In the case of a 35Ni-15Cr type iron-base superalloy, in which phases such as γ′-Ni_3(Al, Ti), M_3B_2, TiC, Y-Ti_2SC, β-NiAl, α-Ni_2AlTi, η-Ni_3Ti, σ and Laves, may be present, total amount of aluminium and titanium and the ratio (Ti/Al) in the alloy exerted marked influences upon these phases. It is found that the variation of Al+Ti contents may change the weight fraction, the size and the chemical composition of γ′-phase and γ-γ′ mismatch, as well as the microstructure of the alloy after prolonged exposure at 800℃ for 500 hrs and at 700℃ for 5000 hrs. The ratio Ti/Al, however, affected the γ-γ′ mismatch and the chemical compositions of γ′-phase, but not the weight fraction and size of γ′-phase. It was observed that either σ or Laves phase was present after prolonged exposure at 800℃ and 700℃ if Al+Ti content of the alloy exceeded 5 or 4% respectively. The tensile properties at room temperature and at 650℃, the stress-rupture properties at 750℃, the tensile properties after prolonged exposure at 700℃ all showed a change of the mechanical properties of the alloy commensurate with the microstructutre aforementioned.
铝和钛对一种35镍15铬型铁基高温合金组织结构和力学性能的影响
[J].在一种35镍15铬型铁基高温合金中,随铝、钛和及钛铝比不同,合金中出现γ′-Ni_3(Al,Ti),M_3B_2,TiC,Y-Ti_2SC,β-NiAl,α-Ni_2AlTi,η-Ni_3Ti,σ和Layes相。 铝、钛和对γ′相的数量、大小、错配度及化学成份有强烈影响。而钛铝比主要影响γ′相的错配度和成份,对数量和大小几乎没有影响。对于800℃(500小时)和700℃(5000小时)时效后的组织,铝、钛和也有显著影响,析出σ或Laves相的Al+Ti含量分别为5%和4%左右。 铝、钛和及钛铝比并能明显影响室温和650℃瞬时性能、750℃持久时间以及700℃长期时效后的力学性能。
Grain boundary microstructure and fatigue crack growth in Allvac 718Plus superalloy
[J].
The effect of grain size on the dwell fatigue crack growth rate of alloy ATI 718Plus®
[A].
Influence of grain size and volume fraction of η/δ precipitates on the dwell fatigue crack propagation rate and creep resistance of the nickel-base superalloy ATI 718Plus
[J].
Effect of thermal-mechanical treatment on the fatigue crack propagation behavior of newly developed Allvac® 718PlusTM alloy
[A].
Microstructural study of fatigue and dwell fatigue crack growth behaviour of ATI 718Plus alloy
[J].
Effect of ultrasonic nanocrystal surface modification on elevated temperature residual stress, microstructure, and fatigue behavior of ATI 718Plus alloy
[J].
Effect of ultrasonic nanocrystal surface modification on residual stress, microstructure and fatigue behavior of ATI 718Plus alloy
[J].
Effect of laser shock peening on elevated temperature residual stress, microstructure and fatigue behavior of ATI 718Plus alloy
[J].
Effect of laser shock peening on residual stress, microstructure and fatigue behavior of ATI 718Plus alloy
[J].
Microstructural changes in long-time thermally exposed Ni-base superalloy studied by SANS
[J].
Creep performance and damage mechanism for Allvac 718Plus superalloy
[J].
Creep deformation of Allvac 718Plus
[J].
On the composition of microtwins in a single crystal nickel-based superalloy
[J].
Dislocation decorrelation and relationship to deformation microtwins during creep of a gamma' precipitate strengthened Ni-based superalloy
[J].
Effect of grain boundary misorientation on η phase precipitation in Ni-base superalloy 718Plus
[J].In an effort to engineer the morphology of the grain boundaries in Alloy 718Plus to be more damage tolerant, the primary aim of this study was to investigate the effect of the grain boundary misorientation on the precipitation of eta phase precipitates. Two types of eta phase precipitates were observed to form within the microstructure which formed either lamellar structures or were present as discrete eta phase precipitates. The lamellar eta phase precipitates were able to induce the formation of serrated grain boundaries, but their precipitation was not correlated to the grain boundary misorientation as they were observed to reside along approximately half of all low angle grain boundaries. However, the average length of the eta phase precipitates was found to be affected by the grain boundary misorientation, especially when the precipitates have a low inclination angle with respect to the grain boundary. The presence of discrete eta phase precipitates along the grain boundary was found to be a function of the grain boundary as they were preferentially found to form along grain boundaries with high misorientations.
Grain boundary precipitation in Inconel 718 and ATI 718Plus
[J].
Microstructural features leading to enhanced resistance to grain boundary creep cracking in Allvac 718Plus
[J].
Improving creep resistance of nickel-based superalloy Inconel 718 by tailoring gamma double prime variants
[J].
A study of the heat-affected zone (HAZ) of an Inconel 718 sheet welded with electron-beam welding (EBW)
[J].
On post-weld heat treatment cracking in tig welded superalloy ATI 718Plus
[J].
Repair welding of wrought superalloys: Alloy 718, Allvac 718Plus and Waspaloy
[J].
Investigations on the structure-property relationships of electron beam welded Inconel 625 and UNS 32205
[J].
Signal emitted from plasma during electron-beam welding with deflection oscillations of the beam
[J].
Microstructural analysis of fusion and heat affected zones in electron beam welded Allvac® 718PlusTM superalloy
[J].
Heat affected zone cracking of Allvac 718Plus superalloy during high power beam welding and post-weld heat treatment
[D].
Varestraint weldability testing of ATI 718Plus®-influence of eta phase
[A].
Effect of base metal and welding speed on fusion zone microstructure and HAZ hot-cracking of electron-beam welded Inconel 718
[J].
Varestraint weldability testing of cast ATI® 718Plus™: A comparison to cast alloy 718
[J].
Advanced microstructural characterisation of cast ATI 718Plus®-effect of homogenisation heat treatments on secondary phases and repair welding behaviour
[J].The influence of base metal conditions on the weld cracking behaviour of cast ATI 718Plus (R) is investigated by comparing 4 h and 24 h dwell time pseudo-hip homogenisation heat treatments at 1120, 1160 and 1190 degrees C with the as-cast microstructure. Scanning electron microscopy (SEM), X-ray diffraction (XRD) on electrolytically extracted powder and transmission electron microscopy (TEM) were used to identify Nb-rich secondary phases in interdendritic areas as the C14 Laves phase and Nb(Ti) MC-type carbides. All homogenisation heat treatments but the 1120 degrees C 4-h condition dissolve the Laves phase. A repair welding operation was simulated by linear groove multi-pass manual gas tungsten arc welding (GTAW). The Laves phase containing microstructures resulted in lower total crack length for heat affected zone cracking. Constitutional liquation of Nb(Ti) MC-type carbides is observed as a liquation mechanism in Laves-free microstructure, while thick liquid film formation due to the Laves eutectic melting could reduce the formation of weld cracks in microstructures containing the Laves phase.
The influence of base metal microstructure on weld cracking in manually GTA repair welded cast ATI 718Plus®
[A].
Metallurgical response of electron beam welded Allvac® 718Plus™
[A].
Crack-free electron beam welding of Allvac 718Plus®superalloy
[J].
/
〈 |
|
〉 |
