|
|
中子衍射应力分析技术及其应用进展 |
林皓1,2, 李建3, 杨钊龙3, 钟圣怡2,4( ) |
1 上海交通大学 材料科学与工程学院 上海 200240 2 上海交通大学 中子科学与技术全国重点实验室 上海 200240 3 中国工程物理研究院 核物理与化学研究所 绵阳 621999 4 上海交通大学 巴黎卓越工程师学院 上海 200240 |
|
Recent Progress in Stress Analysis Technology and Application of Neutron Diffraction |
LIN Hao1,2, LI Jian3, YANG Zhaolong3, ZHONG Shengyi2,4( ) |
1 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 2 National Key Laboratory of Neutron Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China 3 Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999, China 4 SJTU Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai 200240, China |
引用本文:
林皓, 李建, 杨钊龙, 钟圣怡. 中子衍射应力分析技术及其应用进展[J]. 金属学报, 2024, 60(8): 1017-1030.
Hao LIN,
Jian LI,
Zhaolong YANG,
Shengyi ZHONG.
Recent Progress in Stress Analysis Technology and Application of Neutron Diffraction[J]. Acta Metall Sin, 2024, 60(8): 1017-1030.
1 |
Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in China [J]. Acta Metall. Sin., 2020, 56: 1313
doi: 10.11900/0412.1961.2020.00199
|
1 |
宿彦京, 付华栋, 白 洋 等. 中国材料基因工程研究进展 [J]. 金属学报, 2020, 56: 1313
doi: 10.11900/0412.1961.2020.00199
|
2 |
Fish J, Wagner G J, Keten S. Mesoscopic and multiscale modelling in materials [J]. Nat. Mater., 2021, 20: 774
doi: 10.1038/s41563-020-00913-0
pmid: 34045697
|
3 |
Huang X X, Wu G L, Zhong X Y, et al. Multi-dimensional multi-scale and high-flux characterization techniques for advanced materials [J]. J. Chin. Electron Micros. Soc., 2016, 35: 567
|
3 |
黄晓旭, 吴桂林, 钟虓龚 等. 先进材料多维多尺度高通量表征技术 [J]. 电子显微学报, 2016, 35: 567
|
4 |
Yu Q K, Jauregui L A, Wu W, et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition [J]. Nat. Mater., 2011, 10: 443
doi: 10.1038/nmat3010
pmid: 21552269
|
5 |
Marola S, Bosia S, Veltro A, et al. Residual stresses in additively manufactured AlSi10Mg: Raman spectroscopy and X-ray diffraction analysis [J]. Mater. Des., 2021, 202: 109550
|
6 |
Kamaya M, Wilkinson A J, Titchmarsh J M. Measurement of plastic strain of polycrystalline material by electron backscatter diffraction [J]. Nucl. Eng. Des., 2005, 235: 713
|
7 |
Zhang Y B, Fan G H. Three-dimensional X-ray diffraction technique for metals science [J]. Mater. China, 2017, 36: 181
|
7 |
张玉彬, 范国华. 三维X射线衍射技术在金属材料研究中的应用 [J]. 中国材料进展, 2017, 36: 181
|
8 |
Hutchings M T, Krawitz A D. Measurement of Residual and Applied Stress Using Neutron Diffraction [M]. Dordrecht: Springer, 1992: 1
|
9 |
Fitzpatrick M E, Lodini A. Analysis of residual stress by diffraction using neutron and synchrotron radiation [M]. London: Taylor & Francis, 2003: 1
|
10 |
Pintschovius L, Jung V, Macherauch E, et al. Residual stress measurements by means of neutron diffraction [J]. Mater. Sci. Eng., 1983, 61: 43
|
11 |
Ren Y. High-energy synchrotron X-ray diffraction and its application to in situ structural phase-transition studies in complex sample environments [J]. JOM, 2012, 64: 140
|
12 |
Jia N, Cong Z H, Sun X, et al. An in situ high-energy X-ray diffraction study of micromechanical behavior of multiple phases in advanced high-strength steels [J]. Acta Mater., 2009, 57: 3965
|
13 |
Jia N, Nie Z H, Ren Y, et al. Formation of deformation textures in face-centered-cubic materials studied by in-situ high-energy X-ray diffraction and self-consistent model [J]. Metall. Mater. Trans., 2010, 41: 1246
|
14 |
Guan H D, Li C J, Gao P, et al. Research progress of high-throughput material synthesis and characterization [J]. Rare Met. Mater. Eng., 2019, 48: 4131
|
14 |
关洪达, 李才巨, 高 鹏 等. 材料高通量制备与表征技术研究进展 [J]. 稀有金属材料与工程, 2019, 48: 4131
|
15 |
Wu S C, Wu Z K, Kang G Z, et al. Research progress on multi-dimensional and multi-scale high-throughput characterization for advanced materials [J]. J. Mech. Eng., 2021, 57(16): 37
doi: 10.3901/JME.2021.16.037
|
15 |
吴圣川, 吴正凯, 康国政 等. 先进材料多维多尺度高通量表征研究进展 [J]. 机械工程学报, 2021, 57(16): 37
doi: 10.3901/JME.2021.16.037
|
16 |
Capello E. Residual stresses in turning: Part I: influence of process parameters [J]. J. Mater. Process. Technol., 2005, 160: 221
|
17 |
Alderliesten R C. Critical review on the assessment of fatigue and fracture in composite materials and structures [J]. Eng. Fail. Anal., 2013, 35: 370
|
18 |
Wissink M L, Chen Y, Frost M J, et al. Operando measurement of lattice strain in internal combustion engine components by neutron diffraction [J]. Proc. Natl. Acad. Sci. USA, 2020, 117: 33061
doi: 10.1073/pnas.2012960117
pmid: 33376215
|
19 |
Hansen T C, Henry P F, Fischer H E, et al. The D20 instrument at the ILL: A versatile high-intensity two-axis neutron diffractometer [J]. Meas. Sci. Technol., 2008, 19: 034001
|
20 |
Hoelzel M, Senyshyn A, Juenke N, et al. High-resolution neutron powder diffractometer SPODI at research reactor FRM II [J]. Nucl. Instrum. Methods Phys. Res., 2012, 667A: 32
|
21 |
Paradowska A M, Baczmańsk A, Zhang S Y, et al. In-situ neutron diffraction studies of various metals on Engin-X at ISIS [J]. CAMP-ISIJ, 2011, 24: 539
|
22 |
Kirstein O, Garbe U, Luzin V. KOWARI-OPAL's new stress diffractometer for the engineering community: Capabilities and first results [J]. Mater. Sci. Forum, 2010, 652: 86
|
23 |
Ishigaki T, Hoshikawa A, Yonemura M, et al. IBARAKI materials design diffractometer (iMATERIA)-Versatile neutron diffractometer at J-PARC [J]. Nucl. Instrum. Methods Phys. Res., 2009, 600A: 189
|
24 |
Li J, Wang H, Sun G A, et al. Neutron diffractometer RSND for residual stress analysis at CAEP [J] Nucl. Instrum. Methods Phys. Res., 2015, 783A: 76
|
25 |
Li T F, Wu M M, Jiao X S, et al. Current status and future prospect of neutron facilities at China advanced research reactor [J]. Nucl. Phys. Rev., 2020, 37: 364
|
25 |
李天富, 武梅梅, 焦学胜 等. 中国先进研究堆中子科学平台发展现状及展望 [J]. 原子核物理评论, 2020, 37: 364
|
26 |
Cheng H, Zhang W, Wang F W, et al. Applications of the China spallation neutron source [J]. Physics, 2019, 48: 701
|
26 |
程 贺, 张 玮, 王芳卫 等. 中国散裂中子源的多学科应用 [J]. 物理, 2019, 48: 701
|
27 |
Gao J B, Zhang S Y, Zhou L, et al. Novel engineering materials diffractometer fabricated at the China Spallation Neutron Source [J]. Nucl. Instrum. Methods Phys. Res., 2022, 1034A: 166817
|
28 |
Wang B, Zhong S, Lin H, et al. Design and performance of the high-resolution stress and texture neutron diffractometer HETU [J]. J. Appl. Cryst., 2023, 56: 1485
|
29 |
Wang B, Zhong S, Lin H, et al. HETU: A new high-resolution stress and texture neutron diffractometer at China Mianyang Research Reactor [J]. J. Appl. Cryst., 2023, 56: 1674
|
30 |
MacEwen S R, Faber J, Turner A P L. The use of time-of-flight neutron diffraction to study grain interaction stresses [J]. Acta Metall., 1983, 31: 657
|
31 |
Roters F, Eisenlohr P, Bieler T R, et al. Crystal Plasticity Finite Element Methods: In Materials Science and Engineering [M]. Weinheim: Wiley-VCH, 2010: 95
|
32 |
Wang Y D, Peng R L, McGreevy R L. A novel method for constructing the mean field of grain-orientation-dependent residual stress [J]. Philos. Mag. Lett., 2001, 81: 153
|
33 |
Paradowska A, Finlayson T R, Price J W H. et al. Investigation of reference samples for residual strain measurements in a welded specimen by neutron and synchrotron X-ray diffraction [J]. Physica, 2006, 385-386B: 904
|
34 |
Tomota Y, Lukáš P, Neov D, et al. In situ neutron diffraction during tensile deformation of a ferrite-cementite steel [J]. Acta Mater., 2003, 51: 805
|
35 |
Jia N, Peng R L, Wang Y D, et al. Interactions between the phase stress and the grain-orientation-dependent stress in duplex stainless steel during deformation [J]. Acta Mater., 2006, 54: 3907
|
36 |
Hao S J, Jiang D Q, Cui L S, et al. Phase-stress partition and stress-induced martensitic transformation in NbTi/NiTi nanocomposite [J]. Appl. Phys. Lett., 2011, 99: 084103
|
37 |
Hao S J, Cui L S, Jiang D Q, et al. A transforming metal nanocomposite with large elastic strain, low modulus, and high strength [J]. Science, 2013, 339: 1191
doi: 10.1126/science.1228602
pmid: 23471404
|
38 |
Maiti S, Steurer W. Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy [J]. Acta Mater., 2016, 106: 87
|
39 |
Zhao P, Chen B, Kelleher J, et al. High-cycle-fatigue induced continuous grain growth in ultrafine-grained titanium [J]. Acta Mater., 2019, 174: 29
doi: 10.1016/j.actamat.2019.05.038
|
40 |
Zhao P C, Chen B, Zheng Z G, et al. Microstructure and texture evolution in a post-dynamic recrystallized titanium during annealing, monotonic and cyclic loading [J]. Metall. Mater. Trans., 2021, 52A: 394
|
41 |
Zhang X X, Wang D, Xiao B L, et al. Enhanced multiscale modeling of macroscopic and microscopic residual stresses evolution during multi-thermo-mechanical processes [J]. Mater. Des., 2017, 115: 364
|
42 |
Zhang X X, Wu L H, Andrä H, et al. Effects of welding speed on the multiscale residual stresses in friction stir welded metal matrix composites [J]. J. Mater. Sci. Technol., 2019, 35: 824
doi: 10.1016/j.jmst.2018.11.005
|
43 |
Cong Z H, Jia N, Sun X, et al. Stress and strain partitioning of ferrite and martensite during deformation [J]. Metall. Mater. Trans., 2009, 40A: 1383
|
44 |
Aba-Perea P E, Pirling T, Preuss M. In-situ residual stress analysis during annealing treatments using neutron diffraction in combination with a novel furnace design [J]. Mater. Des., 2016, 110: 925
|
45 |
Yu D J, An K, Chen X, et al. Phase-specific deformation behavior of a NiAl-Cr(Mo) lamellar composite under thermal and mechanical loads [J]. J. Alloys Compd., 2016, 656: 481
|
46 |
Zhang X X, Xiao B L, Andrä H, et al. Multiscale modeling of macroscopic and microscopic residual stresses in metal matrix composites using 3D realistic digital microstructure models [J]. Compos. Struct., 2016, 137: 18
|
47 |
Shi Y J, Li S L, Lee T L, et al. In situ neutron diffraction study of a new type of stress-induced confined martensitic transformation in Fe22Co20Ni19Cr20Mn12Al7 high-entropy alloy [J]. Mater. Sci. Eng., 2020, A771: 138555
|
48 |
Woo W, Em V T, Kim E Y, et al. Stress-strain relationship between ferrite and martensite in a dual-phase steel studied by in situ neutron diffraction and crystal plasticity theories [J]. Acta Mater., 2012, 60: 6972
|
49 |
Lee C, Kim G, Chou Y, et al. Temperature dependence of elastic and plastic deformation behavior of a refractory high-entropy alloy [J]. Sci. Adv., 2020, 6: eaaz4748
|
50 |
Ma Y S, He J Y, Zhou L, et al. Mechanical properties and impact energy release characteristics of Al0.5NbZrTi1.5Ta0.8Ce0.85 high-entropy alloy [J]. Mater. Res. Express, 2022, 9: 116510
|
51 |
Naeem M, He H Y, Zhang F, et al. Cooperative deformation in high-entropy alloys at ultralow temperatures [J]. Sci. Adv., 2020, 6: eaax4002
|
52 |
Pan Q S, Zhang L X, Feng R, et al. Gradient cell-structured high-entropy alloy with exceptional strength and ductility [J]. Science, 2021, 374: 984
|
53 |
Zhai H Y, Liu C H, Shang X Q, et al. Measuring texture-component-dependent stress of CuZn39Pb2 by neutron diffraction [J]. Int. J. Mech. Sci., 2024, 270: 109109
|
54 |
Zhang X X, Zhang J F, Liu Z Y, et al. Microscopic stresses in carbon nanotube reinforced aluminum matrix composites determined by in-situ neutron diffraction [J]. J. Mater. Sci. Technol., 2020, 54: 58
doi: 10.1016/j.jmst.2020.04.016
|
55 |
Ghosh S, Rana V P S, Kain V, et al. Role of residual stresses induced by industrial fabrication on stress corrosion cracking susceptibility of austenitic stainless steel [J]. Mater. Des., 2011, 32: 3823
|
56 |
Yazdanpanah A, Franceschi M, Bergamo G, et al. On the exceptional stress corrosion cracking susceptibility of selective laser melted 316L stainless steel under the individual effect of surface residual stresses [J]. Eng. Fail. Anal., 2022, 136: 106192
|
57 |
García Navas V, Gonzalo O, Bengoetxea I. Effect of cutting parameters in the surface residual stresses generated by turning in AISI 4340 steel [J]. Int. J. Mach. Tools Manuf., 2012, 61: 48
|
58 |
Bussu G, Irving P E. The role of residual stress and heat affected zone properties on fatigue crack propagation in friction stir welded 2024-T351 aluminium joints [J]. Int. J. Fatigue, 2003, 25: 77
|
59 |
Webster G A, Ezeilo A N. Residual stress distributions and their influence on fatigue lifetimes [J]. Int. J. Fatigue, 2001, 23: 375
|
60 |
Hutchings M T, With P J, Holden, et al. Introduction to the Characterization of Residual Stress by Neutron Diffraction [M]. London: Taylor & Francis, 2005: 4
|
61 |
Guo J, Fu H Y, Pan B, et al. Recent progress of residual stress measurement methods: A review [J]. Chin. J. Aeronaut., 2021, 34: 54
|
62 |
Nishida M, Jing T, Muslih M R, et al. Residual stress measurement of titanium casting alloy by neutron diffraction [J]. AIP Conf. Proc., 2008, 989: 101
|
63 |
Pratihar S, Turski M, Edwards L, et al. Neutron diffraction residual stress measurements in a 316L stainless steel bead-on-plate weld specimen [J]. Int. J. Press. Vessels Pip., 2009, 86: 13
|
64 |
Zhang Z W. Study on the evolution of three-dimensional residual stress field in turbine discs by using neutron/X-ray diffraction and finite element method [D]. Beijing: University of Science & Technology Beijing, 2022
|
64 |
张哲维. 基于中子/X射线衍射与有限元法的涡轮盘模拟件三维残余应力场演变研究 [D]. 北京: 北京科技大学, 2022
|
65 |
Wang Z Q, Stoica A D, Ma D, et al. Diffraction and single-crystal elastic constants of Inconel 625 at room and elevated temperatures determined by neutron diffraction [J]. Mater. Sci. Eng., 2016, A674: 406
|
66 |
Wu E D, Li J C, Zhang J, et al. Neutron and X-Ray diffraction study of internal stress in thermomechanically fatigued single-crystal superalloy [J]. Metall. Mater. Trans., 2008, 39A: 3141
|
67 |
Pierret S, Evans A, Paradowska A M, et al. Combining neutron diffraction and imaging for residual strain measurements in a single crystal turbine blade [J]. NDT & E Int., 2012, 45: 39
|
68 |
Seo S, Huang E W, Woo W, et al. Neutron diffraction residual stress analysis during fatigue crack growth retardation of stainless steel [J]. Int. J. Fatigue, 2017, 104: 408
|
69 |
Li S L, Li Y, Wang Y K, et al. Multiscale residual stress evaluation of engineering materials/components based on neutron and synchrotron radiation technology [J]. Acta Metall. Sin., 2023, 59: 1001
doi: 10.11900/0412.1961.2023.00157
|
69 |
李时磊, 李 阳, 王友康 等. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价 [J]. 金属学报, 2023, 59: 1001
doi: 10.11900/0412.1961.2023.00157
|
70 |
Sasaki T, Takahashi S, Kanematsu Y, et al. Measurement of residual stresses in rails by neutron diffraction [J] Wear, 2008, 265: 1402
|
71 |
Zhou L, Zhang H, Qin T, et al. Gradient residual strain measurement procedure in surface impacted railway steel axles by using neutron scattering [J]. Metall. Mater. Trans., 2024, 55A: 2175
|
72 |
Jun T S, Hofmann F, Belnoue J, et al. Triaxial residual strains in a railway rail measured by neutron diffraction [J]. J. Strain Anal. Eng., 2009, 44: 563
|
73 |
Zhao J C. High-throughput experimental tools for the materials genome initiative [J]. Chin. Sci. Bull., 2014, 59: 1652
|
73 |
赵继成. 材料基因组计划中的高通量实验方法 [J]. 科学通报, 2013, 58: 3647
|
74 |
Liu C K, Li N, Zhao W X, et al. Requirements of microstructure and risidual stress evaluation of aeronautical materials for neutron scattering and synchrotron radiation techniques [J]. Fail. Anal. Prev., 2019, 14: 133
|
74 |
刘昌奎, 李 楠, 赵文侠 等. 航空材料组织与残余应力评价对中子散射与同步辐射技术的需求 [J]. 失效分析与预防, 2019, 14: 133
|
75 |
Wang H Z, Wang H, Ding H, et al. Progress in high-throughput materials synthesis and characterization [J]. Sci. Technol. Rev., 2015, 33(10): 31
doi: 10.3981/j.issn.1000-7857.2015.10.003
|
75 |
王海舟, 汪 洪, 丁 洪 等. 材料的高通量制备与表征技术 [J]. 科技导报, 2015, 33(10): 31
doi: 10.3981/j.issn.1000-7857.2015.10.003
|
76 |
Ioannidou C, Navarro-López A, Dalgliesh R M, et al. Phase-transformation and precipitation kinetics in vanadium micro-alloyed steels by in-situ, simultaneous neutron diffraction and SANS [J]. Acta Mater., 2021, 220: 117317
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|