Please wait a minute...
金属学报  2024, Vol. 60 Issue (8): 1017-1030    DOI: 10.11900/0412.1961.2024.00061
  综述 本期目录 | 过刊浏览 |
中子衍射应力分析技术及其应用进展
林皓1,2, 李建3, 杨钊龙3, 钟圣怡2,4()
1 上海交通大学 材料科学与工程学院 上海 200240
2 上海交通大学 中子科学与技术全国重点实验室 上海 200240
3 中国工程物理研究院 核物理与化学研究所 绵阳 621999
4 上海交通大学 巴黎卓越工程师学院 上海 200240
Recent Progress in Stress Analysis Technology and Application of Neutron Diffraction
LIN Hao1,2, LI Jian3, YANG Zhaolong3, ZHONG Shengyi2,4()
1 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2 National Key Laboratory of Neutron Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
3 Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999, China
4 SJTU Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai 200240, China
引用本文:

林皓, 李建, 杨钊龙, 钟圣怡. 中子衍射应力分析技术及其应用进展[J]. 金属学报, 2024, 60(8): 1017-1030.
Hao LIN, Jian LI, Zhaolong YANG, Shengyi ZHONG. Recent Progress in Stress Analysis Technology and Application of Neutron Diffraction[J]. Acta Metall Sin, 2024, 60(8): 1017-1030.

全文: PDF(2827 KB)   HTML
摘要: 

中子衍射依托中子源大科学装置,能够非破坏性地获取材料内部微结构的统计信息,是建立物质微观、介观和宏观结构与性能内在联系的重要表征手段,同时也是航空发动机涡轮盘/叶片、反应堆压力容器等重大技术与装备关键部件内部残余应力定量无损评价的重要方法。本文简要介绍了中子衍射技术测量原理和基本方法,阐述了该技术在材料基础与前沿探索的研究进展,评述了其在工程构件设计、制造、服役及安全评估中的地位与作用。基于新材料和新工艺开发的共性需求,展望了中子衍射技术跨尺度、多参量分析的开发潜力,及其未来在高通量表征中的发展方向。

关键词 中子衍射残余应力高通量表征服役安全    
Abstract

Neutron diffraction is an advanced experimental technology relying on the neutron source scientific device, which can obtain statistical information of the internal microstructure of materials in a non-destructive manner. It is an indispensable characterization method for establishing the intrinsic relationship between the microstructure, mesoscopic, and macroscopic structure and performance of materials. At the same time, it is an important method for quantitative non-destructive evaluation of residual stress inside key components of major technologies and equipment. This article briefly introduces the measurement principle and basic methods of neutron diffraction technology, elaborates on the research progress of this technology in material foundation and cutting-edge exploration, and evaluates its position and role in engineering component design, manufacturing, service, and safety assessment. Finally, based on the common requirements for the development of new materials and processes, the development potential of neutron diffraction technology for cross scale and multi parameter analysis is discussed, as well as its future development direction in high-throughput characterization.

Key wordsneutron diffraction    residual stress    high throughput characterization    service safety
收稿日期: 2024-03-01     
ZTFLH:  TG142.71  
基金资助:国家重点研发计划项目(2021YFA1600900);海洋装备前瞻创新联合基金项目(ZCJDQZ202303A01);新进教师启动计划项目(23X010502174)
通讯作者: 钟圣怡,shengyi.zhong@sjtu.edu.cn,主要从事中子散射技术、中子谱仪装置研究
Corresponding author: ZHONG Shengyi, professor, Tel: (021)54740057, E-mail: shengyi.zhong@sjtu.edu.cn
作者简介: 林 皓,男,1988年生,博士
图1  中子衍射谱仪“河图”实物
图2  ENGIN-X原位中子衍射测试疲劳实验样品示意图及结果[39]
图3  在0和1070 MPa宏观应力下DP980双相钢中(200)和(211)晶面的中子衍射峰[48]
图4  铁素体和马氏体晶格应变中子衍射测试及模拟结果[48]
图5  通过SEM、中子衍射(ND)和原位高温ND实验中的真应变-应力曲线获得的均匀化NbTaTiV合金的微观结构、相特征和力学性能[49]
图6  CrMnFeCoNi合金在低温下的晶体结构和变形行为[51]
图7  原位中子衍射实验装置及中子衍射图案[54]
图8  铁轨残余应力分布中子衍射测试设备及主应力分布示意图[70]
图9  中子衍射与中子小角散射原位同步测试实验装置示意图[76]
1 Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in China [J]. Acta Metall. Sin., 2020, 56: 1313
doi: 10.11900/0412.1961.2020.00199
1 宿彦京, 付华栋, 白 洋 等. 中国材料基因工程研究进展 [J]. 金属学报, 2020, 56: 1313
doi: 10.11900/0412.1961.2020.00199
2 Fish J, Wagner G J, Keten S. Mesoscopic and multiscale modelling in materials [J]. Nat. Mater., 2021, 20: 774
doi: 10.1038/s41563-020-00913-0 pmid: 34045697
3 Huang X X, Wu G L, Zhong X Y, et al. Multi-dimensional multi-scale and high-flux characterization techniques for advanced materials [J]. J. Chin. Electron Micros. Soc., 2016, 35: 567
3 黄晓旭, 吴桂林, 钟虓龚 等. 先进材料多维多尺度高通量表征技术 [J]. 电子显微学报, 2016, 35: 567
4 Yu Q K, Jauregui L A, Wu W, et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition [J]. Nat. Mater., 2011, 10: 443
doi: 10.1038/nmat3010 pmid: 21552269
5 Marola S, Bosia S, Veltro A, et al. Residual stresses in additively manufactured AlSi10Mg: Raman spectroscopy and X-ray diffraction analysis [J]. Mater. Des., 2021, 202: 109550
6 Kamaya M, Wilkinson A J, Titchmarsh J M. Measurement of plastic strain of polycrystalline material by electron backscatter diffraction [J]. Nucl. Eng. Des., 2005, 235: 713
7 Zhang Y B, Fan G H. Three-dimensional X-ray diffraction technique for metals science [J]. Mater. China, 2017, 36: 181
7 张玉彬, 范国华. 三维X射线衍射技术在金属材料研究中的应用 [J]. 中国材料进展, 2017, 36: 181
8 Hutchings M T, Krawitz A D. Measurement of Residual and Applied Stress Using Neutron Diffraction [M]. Dordrecht: Springer, 1992: 1
9 Fitzpatrick M E, Lodini A. Analysis of residual stress by diffraction using neutron and synchrotron radiation [M]. London: Taylor & Francis, 2003: 1
10 Pintschovius L, Jung V, Macherauch E, et al. Residual stress measurements by means of neutron diffraction [J]. Mater. Sci. Eng., 1983, 61: 43
11 Ren Y. High-energy synchrotron X-ray diffraction and its application to in situ structural phase-transition studies in complex sample environments [J]. JOM, 2012, 64: 140
12 Jia N, Cong Z H, Sun X, et al. An in situ high-energy X-ray diffraction study of micromechanical behavior of multiple phases in advanced high-strength steels [J]. Acta Mater., 2009, 57: 3965
13 Jia N, Nie Z H, Ren Y, et al. Formation of deformation textures in face-centered-cubic materials studied by in-situ high-energy X-ray diffraction and self-consistent model [J]. Metall. Mater. Trans., 2010, 41: 1246
14 Guan H D, Li C J, Gao P, et al. Research progress of high-throughput material synthesis and characterization [J]. Rare Met. Mater. Eng., 2019, 48: 4131
14 关洪达, 李才巨, 高 鹏 等. 材料高通量制备与表征技术研究进展 [J]. 稀有金属材料与工程, 2019, 48: 4131
15 Wu S C, Wu Z K, Kang G Z, et al. Research progress on multi-dimensional and multi-scale high-throughput characterization for advanced materials [J]. J. Mech. Eng., 2021, 57(16): 37
doi: 10.3901/JME.2021.16.037
15 吴圣川, 吴正凯, 康国政 等. 先进材料多维多尺度高通量表征研究进展 [J]. 机械工程学报, 2021, 57(16): 37
doi: 10.3901/JME.2021.16.037
16 Capello E. Residual stresses in turning: Part I: influence of process parameters [J]. J. Mater. Process. Technol., 2005, 160: 221
17 Alderliesten R C. Critical review on the assessment of fatigue and fracture in composite materials and structures [J]. Eng. Fail. Anal., 2013, 35: 370
18 Wissink M L, Chen Y, Frost M J, et al. Operando measurement of lattice strain in internal combustion engine components by neutron diffraction [J]. Proc. Natl. Acad. Sci. USA, 2020, 117: 33061
doi: 10.1073/pnas.2012960117 pmid: 33376215
19 Hansen T C, Henry P F, Fischer H E, et al. The D20 instrument at the ILL: A versatile high-intensity two-axis neutron diffractometer [J]. Meas. Sci. Technol., 2008, 19: 034001
20 Hoelzel M, Senyshyn A, Juenke N, et al. High-resolution neutron powder diffractometer SPODI at research reactor FRM II [J]. Nucl. Instrum. Methods Phys. Res., 2012, 667A: 32
21 Paradowska A M, Baczmańsk A, Zhang S Y, et al. In-situ neutron diffraction studies of various metals on Engin-X at ISIS [J]. CAMP-ISIJ, 2011, 24: 539
22 Kirstein O, Garbe U, Luzin V. KOWARI-OPAL's new stress diffractometer for the engineering community: Capabilities and first results [J]. Mater. Sci. Forum, 2010, 652: 86
23 Ishigaki T, Hoshikawa A, Yonemura M, et al. IBARAKI materials design diffractometer (iMATERIA)-Versatile neutron diffractometer at J-PARC [J]. Nucl. Instrum. Methods Phys. Res., 2009, 600A: 189
24 Li J, Wang H, Sun G A, et al. Neutron diffractometer RSND for residual stress analysis at CAEP [J] Nucl. Instrum. Methods Phys. Res., 2015, 783A: 76
25 Li T F, Wu M M, Jiao X S, et al. Current status and future prospect of neutron facilities at China advanced research reactor [J]. Nucl. Phys. Rev., 2020, 37: 364
25 李天富, 武梅梅, 焦学胜 等. 中国先进研究堆中子科学平台发展现状及展望 [J]. 原子核物理评论, 2020, 37: 364
26 Cheng H, Zhang W, Wang F W, et al. Applications of the China spallation neutron source [J]. Physics, 2019, 48: 701
26 程 贺, 张 玮, 王芳卫 等. 中国散裂中子源的多学科应用 [J]. 物理, 2019, 48: 701
27 Gao J B, Zhang S Y, Zhou L, et al. Novel engineering materials diffractometer fabricated at the China Spallation Neutron Source [J]. Nucl. Instrum. Methods Phys. Res., 2022, 1034A: 166817
28 Wang B, Zhong S, Lin H, et al. Design and performance of the high-resolution stress and texture neutron diffractometer HETU [J]. J. Appl. Cryst., 2023, 56: 1485
29 Wang B, Zhong S, Lin H, et al. HETU: A new high-resolution stress and texture neutron diffractometer at China Mianyang Research Reactor [J]. J. Appl. Cryst., 2023, 56: 1674
30 MacEwen S R, Faber J, Turner A P L. The use of time-of-flight neutron diffraction to study grain interaction stresses [J]. Acta Metall., 1983, 31: 657
31 Roters F, Eisenlohr P, Bieler T R, et al. Crystal Plasticity Finite Element Methods: In Materials Science and Engineering [M]. Weinheim: Wiley-VCH, 2010: 95
32 Wang Y D, Peng R L, McGreevy R L. A novel method for constructing the mean field of grain-orientation-dependent residual stress [J]. Philos. Mag. Lett., 2001, 81: 153
33 Paradowska A, Finlayson T R, Price J W H. et al. Investigation of reference samples for residual strain measurements in a welded specimen by neutron and synchrotron X-ray diffraction [J]. Physica, 2006, 385-386B: 904
34 Tomota Y, Lukáš P, Neov D, et al. In situ neutron diffraction during tensile deformation of a ferrite-cementite steel [J]. Acta Mater., 2003, 51: 805
35 Jia N, Peng R L, Wang Y D, et al. Interactions between the phase stress and the grain-orientation-dependent stress in duplex stainless steel during deformation [J]. Acta Mater., 2006, 54: 3907
36 Hao S J, Jiang D Q, Cui L S, et al. Phase-stress partition and stress-induced martensitic transformation in NbTi/NiTi nanocomposite [J]. Appl. Phys. Lett., 2011, 99: 084103
37 Hao S J, Cui L S, Jiang D Q, et al. A transforming metal nanocomposite with large elastic strain, low modulus, and high strength [J]. Science, 2013, 339: 1191
doi: 10.1126/science.1228602 pmid: 23471404
38 Maiti S, Steurer W. Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy [J]. Acta Mater., 2016, 106: 87
39 Zhao P, Chen B, Kelleher J, et al. High-cycle-fatigue induced continuous grain growth in ultrafine-grained titanium [J]. Acta Mater., 2019, 174: 29
doi: 10.1016/j.actamat.2019.05.038
40 Zhao P C, Chen B, Zheng Z G, et al. Microstructure and texture evolution in a post-dynamic recrystallized titanium during annealing, monotonic and cyclic loading [J]. Metall. Mater. Trans., 2021, 52A: 394
41 Zhang X X, Wang D, Xiao B L, et al. Enhanced multiscale modeling of macroscopic and microscopic residual stresses evolution during multi-thermo-mechanical processes [J]. Mater. Des., 2017, 115: 364
42 Zhang X X, Wu L H, Andrä H, et al. Effects of welding speed on the multiscale residual stresses in friction stir welded metal matrix composites [J]. J. Mater. Sci. Technol., 2019, 35: 824
doi: 10.1016/j.jmst.2018.11.005
43 Cong Z H, Jia N, Sun X, et al. Stress and strain partitioning of ferrite and martensite during deformation [J]. Metall. Mater. Trans., 2009, 40A: 1383
44 Aba-Perea P E, Pirling T, Preuss M. In-situ residual stress analysis during annealing treatments using neutron diffraction in combination with a novel furnace design [J]. Mater. Des., 2016, 110: 925
45 Yu D J, An K, Chen X, et al. Phase-specific deformation behavior of a NiAl-Cr(Mo) lamellar composite under thermal and mechanical loads [J]. J. Alloys Compd., 2016, 656: 481
46 Zhang X X, Xiao B L, Andrä H, et al. Multiscale modeling of macroscopic and microscopic residual stresses in metal matrix composites using 3D realistic digital microstructure models [J]. Compos. Struct., 2016, 137: 18
47 Shi Y J, Li S L, Lee T L, et al. In situ neutron diffraction study of a new type of stress-induced confined martensitic transformation in Fe22Co20Ni19Cr20Mn12Al7 high-entropy alloy [J]. Mater. Sci. Eng., 2020, A771: 138555
48 Woo W, Em V T, Kim E Y, et al. Stress-strain relationship between ferrite and martensite in a dual-phase steel studied by in situ neutron diffraction and crystal plasticity theories [J]. Acta Mater., 2012, 60: 6972
49 Lee C, Kim G, Chou Y, et al. Temperature dependence of elastic and plastic deformation behavior of a refractory high-entropy alloy [J]. Sci. Adv., 2020, 6: eaaz4748
50 Ma Y S, He J Y, Zhou L, et al. Mechanical properties and impact energy release characteristics of Al0.5NbZrTi1.5Ta0.8Ce0.85 high-entropy alloy [J]. Mater. Res. Express, 2022, 9: 116510
51 Naeem M, He H Y, Zhang F, et al. Cooperative deformation in high-entropy alloys at ultralow temperatures [J]. Sci. Adv., 2020, 6: eaax4002
52 Pan Q S, Zhang L X, Feng R, et al. Gradient cell-structured high-entropy alloy with exceptional strength and ductility [J]. Science, 2021, 374: 984
53 Zhai H Y, Liu C H, Shang X Q, et al. Measuring texture-component-dependent stress of CuZn39Pb2 by neutron diffraction [J]. Int. J. Mech. Sci., 2024, 270: 109109
54 Zhang X X, Zhang J F, Liu Z Y, et al. Microscopic stresses in carbon nanotube reinforced aluminum matrix composites determined by in-situ neutron diffraction [J]. J. Mater. Sci. Technol., 2020, 54: 58
doi: 10.1016/j.jmst.2020.04.016
55 Ghosh S, Rana V P S, Kain V, et al. Role of residual stresses induced by industrial fabrication on stress corrosion cracking susceptibility of austenitic stainless steel [J]. Mater. Des., 2011, 32: 3823
56 Yazdanpanah A, Franceschi M, Bergamo G, et al. On the exceptional stress corrosion cracking susceptibility of selective laser melted 316L stainless steel under the individual effect of surface residual stresses [J]. Eng. Fail. Anal., 2022, 136: 106192
57 García Navas V, Gonzalo O, Bengoetxea I. Effect of cutting parameters in the surface residual stresses generated by turning in AISI 4340 steel [J]. Int. J. Mach. Tools Manuf., 2012, 61: 48
58 Bussu G, Irving P E. The role of residual stress and heat affected zone properties on fatigue crack propagation in friction stir welded 2024-T351 aluminium joints [J]. Int. J. Fatigue, 2003, 25: 77
59 Webster G A, Ezeilo A N. Residual stress distributions and their influence on fatigue lifetimes [J]. Int. J. Fatigue, 2001, 23: 375
60 Hutchings M T, With P J, Holden, et al. Introduction to the Characterization of Residual Stress by Neutron Diffraction [M]. London: Taylor & Francis, 2005: 4
61 Guo J, Fu H Y, Pan B, et al. Recent progress of residual stress measurement methods: A review [J]. Chin. J. Aeronaut., 2021, 34: 54
62 Nishida M, Jing T, Muslih M R, et al. Residual stress measurement of titanium casting alloy by neutron diffraction [J]. AIP Conf. Proc., 2008, 989: 101
63 Pratihar S, Turski M, Edwards L, et al. Neutron diffraction residual stress measurements in a 316L stainless steel bead-on-plate weld specimen [J]. Int. J. Press. Vessels Pip., 2009, 86: 13
64 Zhang Z W. Study on the evolution of three-dimensional residual stress field in turbine discs by using neutron/X-ray diffraction and finite element method [D]. Beijing: University of Science & Technology Beijing, 2022
64 张哲维. 基于中子/X射线衍射与有限元法的涡轮盘模拟件三维残余应力场演变研究 [D]. 北京: 北京科技大学, 2022
65 Wang Z Q, Stoica A D, Ma D, et al. Diffraction and single-crystal elastic constants of Inconel 625 at room and elevated temperatures determined by neutron diffraction [J]. Mater. Sci. Eng., 2016, A674: 406
66 Wu E D, Li J C, Zhang J, et al. Neutron and X-Ray diffraction study of internal stress in thermomechanically fatigued single-crystal superalloy [J]. Metall. Mater. Trans., 2008, 39A: 3141
67 Pierret S, Evans A, Paradowska A M, et al. Combining neutron diffraction and imaging for residual strain measurements in a single crystal turbine blade [J]. NDT & E Int., 2012, 45: 39
68 Seo S, Huang E W, Woo W, et al. Neutron diffraction residual stress analysis during fatigue crack growth retardation of stainless steel [J]. Int. J. Fatigue, 2017, 104: 408
69 Li S L, Li Y, Wang Y K, et al. Multiscale residual stress evaluation of engineering materials/components based on neutron and synchrotron radiation technology [J]. Acta Metall. Sin., 2023, 59: 1001
doi: 10.11900/0412.1961.2023.00157
69 李时磊, 李 阳, 王友康 等. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价 [J]. 金属学报, 2023, 59: 1001
doi: 10.11900/0412.1961.2023.00157
70 Sasaki T, Takahashi S, Kanematsu Y, et al. Measurement of residual stresses in rails by neutron diffraction [J] Wear, 2008, 265: 1402
71 Zhou L, Zhang H, Qin T, et al. Gradient residual strain measurement procedure in surface impacted railway steel axles by using neutron scattering [J]. Metall. Mater. Trans., 2024, 55A: 2175
72 Jun T S, Hofmann F, Belnoue J, et al. Triaxial residual strains in a railway rail measured by neutron diffraction [J]. J. Strain Anal. Eng., 2009, 44: 563
73 Zhao J C. High-throughput experimental tools for the materials genome initiative [J]. Chin. Sci. Bull., 2014, 59: 1652
73 赵继成. 材料基因组计划中的高通量实验方法 [J]. 科学通报, 2013, 58: 3647
74 Liu C K, Li N, Zhao W X, et al. Requirements of microstructure and risidual stress evaluation of aeronautical materials for neutron scattering and synchrotron radiation techniques [J]. Fail. Anal. Prev., 2019, 14: 133
74 刘昌奎, 李 楠, 赵文侠 等. 航空材料组织与残余应力评价对中子散射与同步辐射技术的需求 [J]. 失效分析与预防, 2019, 14: 133
75 Wang H Z, Wang H, Ding H, et al. Progress in high-throughput materials synthesis and characterization [J]. Sci. Technol. Rev., 2015, 33(10): 31
doi: 10.3981/j.issn.1000-7857.2015.10.003
75 王海舟, 汪 洪, 丁 洪 等. 材料的高通量制备与表征技术 [J]. 科技导报, 2015, 33(10): 31
doi: 10.3981/j.issn.1000-7857.2015.10.003
76 Ioannidou C, Navarro-López A, Dalgliesh R M, et al. Phase-transformation and precipitation kinetics in vanadium micro-alloyed steels by in-situ, simultaneous neutron diffraction and SANS [J]. Acta Mater., 2021, 220: 117317
[1] 李彪, 张龙, 颜廷毅, 付华萌, 袁旭东, 文明月, 张宏伟, 李宏, 张海峰. 热处理工艺和W丝特性对W丝增强锆基非晶复合材料残余应力的影响[J]. 金属学报, 2024, 60(8): 1055-1063.
[2] 王浩宇, 吕熙睿, 陈琦, 熊瑛, 罗志新, 张洁, 王京阳. 高熵稀土单硅酸盐环境障涂层局域结构的原子对分布函数解析[J]. 金属学报, 2024, 60(8): 1130-1140.
[3] 周牧, 王倩, 王延绪, 翟梓融, 何伦华, 李昺, 马英杰, 雷家峰, 杨锐. 焊前预处理对钛合金厚板焊接残余应力的影响[J]. 金属学报, 2024, 60(8): 1064-1078.
[4] 任卫军, 安萌, 高飞, 罗小华, 李昺, 张志东, 王进威. 三方Cr5Te8 的磁结构和反常热膨胀[J]. 金属学报, 2024, 60(8): 1150-1154.
[5] 朱桂杰, 王思清, 查敏, 李眉娟, 孙凯, 陈东风. 稀土元素Ce对挤压态Mg-0.3Al-0.2Ca-0.5Mn合金板材体织构及力学各向异性的影响[J]. 金属学报, 2024, 60(8): 1079-1090.
[6] 谷黎明, 冯效铭, 于朝, 张峻凡, 刘振宇, 何伦华, 卢怀乐, 李小虎, 王晨, 张晓东, 肖伯律, 马宗义. 深冷循环对SiC/Al复合材料宏微观残余应力的影响[J]. 金属学报, 2024, 60(8): 1031-1042.
[7] 熊毅, 栾泽伟, 马云飞, 厉勇, 查小琴. 超音速微粒轰击诱导表面纳米化对300M钢腐蚀疲劳行为的影响[J]. 金属学报, 2024, 60(5): 627-638.
[8] 杨俊杰, 张昌盛, 李洪佳, 谢雷, 王虹, 孙光爱. 拉伸-扭转复合加载对镍基高温合金GH4169力学性能与变形机理的影响[J]. 金属学报, 2024, 60(1): 30-42.
[9] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[10] 杜金辉, 毕中南, 曲敬龙. 三联冶炼GH4169合金研究进展[J]. 金属学报, 2023, 59(9): 1159-1172.
[11] 李时磊, 李阳, 王友康, 王胜杰, 何伦华, 孙光爱, 肖体乔, 王沿东. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价[J]. 金属学报, 2023, 59(8): 1001-1014.
[12] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[13] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[14] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[15] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.