Please wait a minute...
金属学报  2024, Vol. 60 Issue (12): 1595-1606    DOI: 10.11900/0412.1961.2022.00623
  研究论文 本期目录 | 过刊浏览 |
纵向静磁场对DD98M合金定向凝固微观组织与偏析的影响
刘翔1,2, 王英豪1,2, 张小新1,2(), 陈超越1,2, 孟杰3, 余建波1,2, 王江1,2(), 任忠鸣1,2
1 上海大学 省部共建高品质特殊钢冶金与制备国家重点实验室 上海 200444
2 上海大学 材料科学与工程学院 上海 200444
3 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
Influence of Longitudinal Static Magnetic Field on Microstructure and Microsegregation During Directional Solidification of DD98M Alloy
LIU Xiang1,2, WANG Yinghao1,2, ZHANG Xiaoxin1,2(), CHEN Chaoyue1,2, MENG Jie3, YU Jianbo1,2, WANG Jiang1,2(), REN Zhongming1,2
1 State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200444, China
2 School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
3 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

刘翔, 王英豪, 张小新, 陈超越, 孟杰, 余建波, 王江, 任忠鸣. 纵向静磁场对DD98M合金定向凝固微观组织与偏析的影响[J]. 金属学报, 2024, 60(12): 1595-1606.
Xiang LIU, Yinghao WANG, Xiaoxin ZHANG, Chaoyue CHEN, Jie MENG, Jianbo YU, Jiang WANG, Zhongming REN. Influence of Longitudinal Static Magnetic Field on Microstructure and Microsegregation During Directional Solidification of DD98M Alloy[J]. Acta Metall Sin, 2024, 60(12): 1595-1606.

全文: PDF(4642 KB)   HTML
摘要: 

为了进一步细化镍基单晶高温合金的微观组织与提升元素分布均质化程度,本工作研究了纵向静磁场对镍基单晶高温合金DD98M定向凝固组织与微观偏析的影响与作用机制,基于Kurz-Fisher模型获得了非平衡固相线与枝晶尖端之间的温差(ΔT')与温度梯度(G)的比值与磁场强度的对应关系,以及枝晶尺度内凝固各阶段的有效分配系数和枝晶干与枝晶间的平均有效分配系数。结果表明,随着磁场强度的增大,DD98M合金的一次枝晶间距减小,γ/γ'共晶组织细化,γ'相尺寸减小,且枝晶间的γ'相逐渐规则化;磁场能有效抑制微观偏析,随着磁场的增大,Al、Ta、Co、W等元素的偏析程度逐渐降低。静磁场下合金的微观组织细化归因于磁场在熔体中引发的热电磁对流导致ΔT' / G的降低或过冷度的增加,而枝晶尺度上合金元素偏析降低本质上是磁场使元素的有效分配系数更趋近于1。

关键词 磁场微观偏析高温合金DD98M热电磁对流    
Abstract

Nickel-based superalloys have been widely used in gas turbines, aerospace, and other fields owing to their excellent high-temperature strength and creep resistance. Advanced directional-solidification techniques allow crystals to grow along specific directions, which can eliminate most or all of the transverse grain boundaries to obtain columnar- or single-crystal superalloys, which further improve the high-temperature mechanical properties. A strong magnetic field can modify the mass-transfer behavior during solidification via magnetic-damping or thermoelectromagnetic effect without contacting the material, thus improving the microstructure and microscopic segregation. In order to further refine the microstructure of nickel-based single crystal superalloys and improve the degree of homogenization of element distribution, the influence of longitudinal static magnetic field with a magnetic field intensity (B) that ranges from 0 to 4 T on the microstructure and microsegregation of liquid-metal-cooling directionally solidified nickel-based single-crystal superalloy DD98M was investigated. OM and SEM were applied to characterize the microstructure. Microsegregation was evaluated using a microsegregation coefficient and isoconcentration contour maps based on different data collection modes embedded in EDS. The results showed that with an increase in B, the primary dendrite spacing, average size of γ/γ' eutectic organization, and size of the γ' phases decreased. Meanwhile, the γ' phase in the interdendrite became more regularized. The microstructure refinement under static magnetic fields was attributed to the decrease in ΔT' / G (ratio of the temperature difference between the nonequilibrium solid-phase line and dendrite tip to the temperature gradient based on the Kurz-Fisher model) or the increase in subcooling of the melt surrounding the dendrites due to thermoelectric-magnetic convection. The relationship between ΔT' / G and B was revealed. The reduction in the γ' phase size was caused by the increase in the nucleation rate of the γ' phase due to the introduction of magnetic free energy difference (ΔGM) under a magnetic field. The magnetic field depressed the microsegregation of solutes, i.e., as B increased, the segregations of Al, Ta, Co, and W decreased. The effective partition coefficient (ke) of the dendritic scale and the average effective partition coefficients of the dendritic and interdendritic areas were obtained. It was found that the decrease in macrosegregation was essentially due to the effective distribution coefficient that approached 1 that due to the magnetic field.

Key wordsmagnetic field    microsegregation    superalloy    DD98M    thermoelectric-magnetic convection
收稿日期: 2022-12-07     
ZTFLH:  TG146  
基金资助:国家重点研发计划项目(2019YFA0705300);国家重大科研仪器研制项目(52127807);上海市“科技创新行动-扬帆计划”项目(21YF1413000)
通讯作者: 张小新,zhangxiaoxin@shu.edu.cn,主要从事高温合金、金属精炼、定向凝固研究;
王 江,jiangwang@i.shu.edu.cn,主要从事磁场控制金属凝固过程及其可视化研究与磁场控制金属增材制造研究
Corresponding author: ZHANG Xiaoxin, associate professor, Tel: (021)66135623, E-mail: zhangxiaoxin@shu.edu.cn;
WANG Jiang, professor, Tel: (021)66135585, E-mail: jiangwang@i.shu.edu.cn
作者简介: 刘 翔,男,1997生,硕士生
图1  强磁场液态金属冷却(LMC) Bridgman定向凝固装置示意图
图2  金相分析取样示意图以及不同模式EDS取点示意图
图3  磁场对定向凝固DD98M合金枝晶组织的影响
图4  抽拉速率100 μm/s时磁场强度(B)对一次枝晶间距(λ)的影响
图5  磁阻尼力(FEMB)和热电磁力(FTEMC)的产生机制示意图以及2者与磁场强度的函数关系[32,33]
图6  不同磁场强度下定向凝固DD98M合金横截面共晶组织的OM像和SEM像
图7  不同磁场强度下定向凝固DD98M合金横截面枝晶干与枝晶间γ'相组织的SEM像
图8  磁场对枝晶干与枝晶间γ'相尺寸的影响
图9  不同磁场强度下各溶质元素的微观偏析系数
图10  不同磁场强度下定向凝固DD98M合金横截面Al、Ta、Co、W元素分布的等高线图
图11  枝晶尺度上不同磁场强度下定向凝固DD98M合金中Al、Ta、Co、W元素的溶质浓度分布曲线
图12  不同磁场强度下各溶质元素ln(CS / C0)与ln(1 - fs)关系图 (a) Al (b) Ta (c) Co (d) W
B / TMallMdendriticfcritical / %
04001460.365
0.54001350.338
24001500.375
44001390.348
表1  不同磁场强度下枝晶干边界临界固相率统计
图13  磁场强度对枝晶间与枝晶干各溶质元素的平均有效分配系数的影响
1 Zhang J, Wang L, Wang D, et al. Recent progress in research and development of nickel-based single crystal superalloys [J]. Acta Metall. Sin, 2019, 55: 1077
1 张 健, 王 莉, 王 栋 等. 镍基单晶高温合金的研发进展 [J]. 金属学报, 2019, 55: 1077
2 Christofidou K A, Jones N G, Pickering E J, et al. The microstructure and hardness of Ni-Co-Al-Ti-Cr quinary alloys [J]. J. Alloys Compd., 2016, 688: 542
3 Ge L, Zhang X N, Guo W G, et al. The coarsening behavior of γ′ phases in Ni-Al binary model single crystal superalloy at 1000oC [J]. J. Alloys Compd., 2022, 911: 164989
4 Van Sluytman J S, Pollock T M. Optimal precipitate shapes in nickel-base γ-γ′ alloys [J]. Acta Mater., 2012, 60: 1771
5 Caldwell E C, Fela F J, Fuchs G E. Segregation of elements in high refractory content single crystal nickel based superalloys [A]. 10th International Symposium on Superalloys [C]. Warrendale, PA: TMS, 2004: 811
6 Biss V, Kirby G N, Sponseller D L. The relative effects of chromium, molybdenum, tungsten, and tantalum on the occurrence of σ phase in cast Ni-Co-Cr alloys [J]. Metall. Mater. Trans., 1976, 7A: 1251
7 Ru Y, Li S S, Pei Y, et al. Interdendritic Mo homogenization and sub-solidus melting during solution treatment in the Mo-strengthening single crystal superalloys [J]. J. Alloys Compd., 2016, 662: 431
8 Xuan W D, Zhang H W, Shao W, et al. Formation mechanism of stray grain of nickel-based single-crystal superalloy under a high magnetic field during directional solidification [J]. Metall. Mater. Trans., 2019, 50B: 27
9 Brundidge C L, van Drasek D, Wang B, et al. Structure refinement by a liquid metal cooling solidification process for single-crystal nickel-base superalloys [J]. Metall. Mater. Trans., 2012, 43A: 965
10 Liu L, Huang T W, Zhang J, et al. Microstructure and stress rupture properties of single crystal superalloy CMSX-2 under high thermal gradient directional solidification [J]. Mater. Lett., 2007, 61: 227
11 Wang F, Ma D X, Zhang J, et al. Effect of local cooling rates on the microstructures of single crystal CMSX-6 superalloy: A comparative assessment of the Bridgman and the downward directional solidification processes [J]. J. Alloys Compd., 2014, 616: 102
12 Ren Z M, Lei Z S, Li C J, et al. New study and development on electromagnetic field technology in metallurgical processes [J]. Acta Metall. Sin., 2020, 56: 583
doi: 10.11900/0412.1961.2019.00373
12 任忠鸣, 雷作胜, 李传军 等. 电磁冶金技术研究新进展 [J]. 金属学报, 2020, 56: 583
doi: 10.11900/0412.1961.2019.00373
13 Zhong H, Li C J, Wang J, et al. Effect of a high static magnetic field on microsegregation of directionally solidified Al-4.5Cu alloy [J]. Acta Metall. Sin., 2016, 52: 575
doi: 10.11900/0412.1961.2015.00520
13 钟 华, 李传军, 王 江 等. 强磁场对定向凝固Al-4.5Cu合金微观偏析的影响 [J]. 金属学报, 2016, 52: 575
14 Xuan W D, Ren Z M, Li C J. Effect of a high magnetic field on microstructures of Ni-based superalloy during directional solidification [J]. J. Alloys Compd., 2015, 620: 10
15 Dong J W, Ren Z M, Ren W L, et al. Effect of horizontal magnetic field on the microstructure of directionally solidified Ni-based superally [J]. Acta Metall. Sin., 2010, 46: 71
15 董建文, 任忠鸣, 任维丽 等. 横向磁场对镍基高温合金定向凝固组织的影响 [J]. 金属学报, 2010, 46: 71
16 Xuan W D, Ren Z M, Li C J, et al. Effect of longitudinal magnetic field on the microstructure of directionally solidified superalloy DZ417G with different sizes [J]. Acta Metall. Sin., 2012, 48: 629
16 玄伟东, 任忠鸣, 李传军 等. 纵向磁场对不同尺寸定向凝固高温合金DZ417G组织的影响 [J]. 金属学报, 2012, 48: 629
doi: 10.3724/SP.J.1037.2011.00621
17 Xuan W D, Lan J, Zhao D K, et al. Effect of a high magnetic field on γ′ phase for Ni-based single crystal superalloy during directional solidification [J]. Metall. Mater. Trans., 2018, 49B: 1919
18 Ren W L, Lu L, Yuan G Z, et al. The effect of magnetic field on precipitation phases of single-crystal nickel-base superalloy during directional solidification [J]. Mater. Lett., 2013, 100: 223
19 Yu J B, Hou Y, Zhang C, et al. Effect of high magnetic field on the microstructure in directionally solidified Co-Al-W alloy [J]. Acta Metall. Sin., 2017, 53: 1620
doi: 10.11900/0412.1961.2017.00165
19 余建波, 侯 渊, 张 超 等. 静磁场对新型Co-Al-W基高温合金定向凝固组织的影响 [J]. 金属学报, 2017, 53: 1620
doi: 10.11900/0412.1961.2017.00165
20 Hou Y, Ren Z M, Wang J, et al. Effect of longitudinal static magnetic field on the columnar to equiaxed transition in directionally solidified GCr15 bearing steel [J]. Acta Metall. Sin., 2018, 54: 801
doi: 10.11900/0412.1961.2017.00557
20 侯 渊, 任忠鸣, 王 江 等. 纵向静磁场对定向凝固GCr15轴承钢柱状晶向等轴晶转变的影响 [J]. 金属学报, 2018, 54: 801
21 Ren W L, Niu C L, Ding B, et al. Improvement in creep life of a nickel-based single-crystal superalloy via composition homogeneity on the multiscales by magnetic-field-assisted directional solidification [J]. Sci. Rep., 2018, 8: 1452
doi: 10.1038/s41598-018-19800-5 pmid: 29362394
22 He S Y, Li C J, Zhan T J, et al. Reduction in microsegregation in Al-Cu alloy by alternating magnetic field [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 267
23 He S Y, Li C J, Guo R, et al. Microsegregation formation in Al-Cu alloy under action of steady magnetic field [J]. ISIJ Int., 2018, 58: 899
24 He S Y, Li C J, Liu X, et al. Research progress of microsegregation behavior during alloy solidification under steady magnetic field [J]. Found. Technol., 2022, 43: 800
24 何盛亚, 李传军, 刘 翔 等. 稳态磁场下合金凝固过程微观偏析行为研究进展 [J]. 铸造技术, 2022, 43: 800
25 Han G M, Zhang Z X, Li J G, et al. High cycle fatigue behavior of a nickel-based single crystal superalloy DD98M at 900oC [J]. Acta Metall. Sin., 2013, 48: 170
25 韩国明, 张振兴, 李金国 等. DD98M镍基单晶高温合金900℃高周疲劳行为 [J]. 金属学报, 2013, 48: 170
26 Dong G Y, You X G, Xu Z H, et al. A new model for studing the evaporation behavior of alloy elements in DD98M alloy during electron beam smelting [J]. Vacuum, 2022, 195: 110641
27 Smith R. Microsegregation measurement: Methods and applications [J]. Metall. Mater. Trans., 2018, 49B: 3258
28 Whitesell H S, Li L, Overfelt R A. Influence of solidification variables on the dendrite arm spacings of Ni-based superalloys [J]. Metall. Mater. Trans., 2000, 31B: 546
29 Vives C, Perry C. Effects of electromagnetic stirring during the controlled solidification of tin [J]. Int. J. Heat Mass Transfer, 1986, 29: 21
30 Xuan W D, Ren Z M, Li C J. Experimental evidence of the effect of a high magnetic field on the stray grains formation in cross-section change region for Ni-based superalloy during directional solidification [J]. Metall. Mater. Trans., 2015, 46A: 1461
31 Li X, Fautrelle Y, Zaidat K, et al. Columnar-to-equiaxed transitions in Al-based alloys during directional solidification under a high magnetic field [J]. J. Cryst. Growth, 2010, 312: 267
32 Li X, Fautrelle Y, Ren Z M. Influence of thermoelectric effects on the solid-liquid interface shape and cellular morphology in the mushy zone during the directional solidification of Al-Cu alloys under a magnetic field [J]. Acta Mater., 2007, 55: 3803
33 Zhang T, Ren W L, Dong J W, et al. Effect of high magnetic field on the primary dendrite arm spacing and segregation of directionally solidified superalloy DZ417G [J]. J. Alloys Compd., 2009, 487: 612
34 Xuan W D, Lan J, Liu H, et al. Effects of a high magnetic field on the microstructure of Ni-based single-crystal superalloys during directional solidification [J]. Metall. Mater. Trans., 2017, 48A: 3804
35 Curreri P A, Lee J E, Stefanescu D M. Dendritic solidification of alloys in low gravity [J]. Metall. Mater. Trans., 1988, 19A: 2671
36 Kurz W, Fisher D J. Dendrite growth at the limit of stability: Tip radius and spacing [J]. Acta Metall., 1981, 29: 11
37 Xuan W D, Liu H, Li C J, et al. Effect of a high magnetic field on microstructures of Ni-based single crystal superalloy during seed melt-back [J]. Metall. Mater. Trans., 2016, 47B: 828
38 Shen Z, Zhou B F, Zhong Y B, et al. Revealing influence mechanism of a transverse static magnetic field on the refinement of primary dendrite spacing during directional solidification [J]. J. Cryst. Growth, 2019, 517: 54
doi: 10.1016/j.jcrysgro.2019.04.010
39 Ganesan M, Dye D, Lee P D. A technique for characterizing microsegregation in multicomponent alloys and its application to single-crystal superalloy castings [J]. Metall. Mater. Trans., 2005, 36A: 2191
40 Seo S M, Jeong H W, Ahn Y K, et al. A comparative study of quantitative microsegregation analyses performed during the solidification of the Ni-base superalloy CMSX-10 [J]. Mater. Charact., 2014, 89: 43
41 Scheil E. Bemerkungen zur schichtkristallbildung [J]. Int. J. Mater. Res., 1942, 34: 70
42 Burton J A, Prim R C, Slichter W P. The distribution of solute in crystals grown from the melt. Part I. Theoretical [J]. J. Chem. Phys., 1953, 21: 1987
[1] 曹姝婷, 赵剑, 巩桐兆, 张少华, 张健. Cu含量对K4061合金显微组织和拉伸性能的影响[J]. 金属学报, 2024, 60(9): 1179-1188.
[2] 白如圣, 谭毅, 崔弘阳, 宁莉丹, 崔传勇, 王云鹏, 李鹏廷. 电子束熔炼功率对GH4068合金微观组织、偏析和 γ相析出行为的影响[J]. 金属学报, 2024, 60(9): 1189-1199.
[3] 王京京, 姚志浩, 张鹏, 赵杰, 张迈, 王蕾, 董建新, 陈迎. 镍基高温合金中S元素对基体与热障涂层界面稳定性的影响[J]. 金属学报, 2024, 60(9): 1250-1264.
[4] 高新亮, 巴文月, 张正, 席仕平, 徐东, 杨志南, 张福成. 贝氏体轨道钢连铸凝固过程中溶质微观偏析模型及分析[J]. 金属学报, 2024, 60(7): 990-1000.
[5] 刘金来, 孙晶霞, 孟杰, 李金国. 一种第三代单晶高温合金的组织稳定性与持久性能[J]. 金属学报, 2024, 60(6): 770-776.
[6] 曾立, 王桂兰, 张海鸥, 翟文正, 张勇, 张明波. 电弧微铸锻复合增材制造GH4169D高温合金的显微组织与力学性能[J]. 金属学报, 2024, 60(5): 681-690.
[7] 刘丞济, 孙文瑶, 陈明辉, 王福会. 放电等离子烧结Ni20Cr-xAl合金的高温氧化行为[J]. 金属学报, 2024, 60(4): 485-494.
[8] 凡莉花, 李金临, 孙九栋, 吕梦甜, 王清, 董闯. Cr/Mo/W元素对镍基高温合金γ/γ′共格组织热稳定性的影响[J]. 金属学报, 2024, 60(4): 453-463.
[9] 刘静, 张思倩, 王栋, 王莉, 陈立佳. Ta对一种抗热腐蚀镍基单晶高温合金长时热暴露组织和蠕变性能的影响[J]. 金属学报, 2024, 60(2): 179-188.
[10] 谭子昊, 李永梅, 王新广, 赵浩川, 谭海兵, 王标, 李金国, 周亦胄, 孙晓峰. 一种第四代镍基单晶高温合金的同相位热机械疲劳行为及损伤机制[J]. 金属学报, 2024, 60(2): 154-166.
[11] 龙江东, 段慧超, 赵鹏, 张瑞, 郑涛, 曲敬龙, 崔传勇, 杜奎. GH4151镍基高温合金 μ 相中的基面层错[J]. 金属学报, 2024, 60(2): 167-178.
[12] 朱锐, 王俊杰, 张云虎, 田志超, 苗信成, 翟启杰. 复合磁场对金属熔体流动及凝固组织的影响[J]. 金属学报, 2024, 60(2): 231-246.
[13] 介子奇, 刘鼎元, $\boxed{\hbox{张军}}$. BZr复合添加对IN718高温合金流动性的影响[J]. 金属学报, 2024, 60(12): 1615-1621.
[14] 魏晨, 王军, 闫育洁, 范嘉懿, 李金山. 强磁场下过冷Cu-Co/Cu-Co-Fe合金的凝固组织和摩擦性能[J]. 金属学报, 2024, 60(11): 1571-1583.
[15] 张振武, 李继康, 许文贺, 沈沐宇, 戚磊一, 郑可盈, 李伟, 魏青松. 搭接工艺对选区激光熔化镍基单晶高温合金DD491晶体取向与微观组织的影响[J]. 金属学报, 2024, 60(11): 1471-1486.