|
|
纵向静磁场对DD98M合金定向凝固微观组织与偏析的影响 |
刘翔1,2, 王英豪1,2, 张小新1,2( ), 陈超越1,2, 孟杰3, 余建波1,2, 王江1,2( ), 任忠鸣1,2 |
1 上海大学 省部共建高品质特殊钢冶金与制备国家重点实验室 上海 200444 2 上海大学 材料科学与工程学院 上海 200444 3 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016 |
|
Influence of Longitudinal Static Magnetic Field on Microstructure and Microsegregation During Directional Solidification of DD98M Alloy |
LIU Xiang1,2, WANG Yinghao1,2, ZHANG Xiaoxin1,2( ), CHEN Chaoyue1,2, MENG Jie3, YU Jianbo1,2, WANG Jiang1,2( ), REN Zhongming1,2 |
1 State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200444, China 2 School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China 3 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
刘翔, 王英豪, 张小新, 陈超越, 孟杰, 余建波, 王江, 任忠鸣. 纵向静磁场对DD98M合金定向凝固微观组织与偏析的影响[J]. 金属学报, 2024, 60(12): 1595-1606.
Xiang LIU,
Yinghao WANG,
Xiaoxin ZHANG,
Chaoyue CHEN,
Jie MENG,
Jianbo YU,
Jiang WANG,
Zhongming REN.
Influence of Longitudinal Static Magnetic Field on Microstructure and Microsegregation During Directional Solidification of DD98M Alloy[J]. Acta Metall Sin, 2024, 60(12): 1595-1606.
1 |
Zhang J, Wang L, Wang D, et al. Recent progress in research and development of nickel-based single crystal superalloys [J]. Acta Metall. Sin, 2019, 55: 1077
|
1 |
张 健, 王 莉, 王 栋 等. 镍基单晶高温合金的研发进展 [J]. 金属学报, 2019, 55: 1077
|
2 |
Christofidou K A, Jones N G, Pickering E J, et al. The microstructure and hardness of Ni-Co-Al-Ti-Cr quinary alloys [J]. J. Alloys Compd., 2016, 688: 542
|
3 |
Ge L, Zhang X N, Guo W G, et al. The coarsening behavior of γ′ phases in Ni-Al binary model single crystal superalloy at 1000oC [J]. J. Alloys Compd., 2022, 911: 164989
|
4 |
Van Sluytman J S, Pollock T M. Optimal precipitate shapes in nickel-base γ-γ′ alloys [J]. Acta Mater., 2012, 60: 1771
|
5 |
Caldwell E C, Fela F J, Fuchs G E. Segregation of elements in high refractory content single crystal nickel based superalloys [A]. 10th International Symposium on Superalloys [C]. Warrendale, PA: TMS, 2004: 811
|
6 |
Biss V, Kirby G N, Sponseller D L. The relative effects of chromium, molybdenum, tungsten, and tantalum on the occurrence of σ phase in cast Ni-Co-Cr alloys [J]. Metall. Mater. Trans., 1976, 7A: 1251
|
7 |
Ru Y, Li S S, Pei Y, et al. Interdendritic Mo homogenization and sub-solidus melting during solution treatment in the Mo-strengthening single crystal superalloys [J]. J. Alloys Compd., 2016, 662: 431
|
8 |
Xuan W D, Zhang H W, Shao W, et al. Formation mechanism of stray grain of nickel-based single-crystal superalloy under a high magnetic field during directional solidification [J]. Metall. Mater. Trans., 2019, 50B: 27
|
9 |
Brundidge C L, van Drasek D, Wang B, et al. Structure refinement by a liquid metal cooling solidification process for single-crystal nickel-base superalloys [J]. Metall. Mater. Trans., 2012, 43A: 965
|
10 |
Liu L, Huang T W, Zhang J, et al. Microstructure and stress rupture properties of single crystal superalloy CMSX-2 under high thermal gradient directional solidification [J]. Mater. Lett., 2007, 61: 227
|
11 |
Wang F, Ma D X, Zhang J, et al. Effect of local cooling rates on the microstructures of single crystal CMSX-6 superalloy: A comparative assessment of the Bridgman and the downward directional solidification processes [J]. J. Alloys Compd., 2014, 616: 102
|
12 |
Ren Z M, Lei Z S, Li C J, et al. New study and development on electromagnetic field technology in metallurgical processes [J]. Acta Metall. Sin., 2020, 56: 583
doi: 10.11900/0412.1961.2019.00373
|
12 |
任忠鸣, 雷作胜, 李传军 等. 电磁冶金技术研究新进展 [J]. 金属学报, 2020, 56: 583
doi: 10.11900/0412.1961.2019.00373
|
13 |
Zhong H, Li C J, Wang J, et al. Effect of a high static magnetic field on microsegregation of directionally solidified Al-4.5Cu alloy [J]. Acta Metall. Sin., 2016, 52: 575
doi: 10.11900/0412.1961.2015.00520
|
13 |
钟 华, 李传军, 王 江 等. 强磁场对定向凝固Al-4.5Cu合金微观偏析的影响 [J]. 金属学报, 2016, 52: 575
|
14 |
Xuan W D, Ren Z M, Li C J. Effect of a high magnetic field on microstructures of Ni-based superalloy during directional solidification [J]. J. Alloys Compd., 2015, 620: 10
|
15 |
Dong J W, Ren Z M, Ren W L, et al. Effect of horizontal magnetic field on the microstructure of directionally solidified Ni-based superally [J]. Acta Metall. Sin., 2010, 46: 71
|
15 |
董建文, 任忠鸣, 任维丽 等. 横向磁场对镍基高温合金定向凝固组织的影响 [J]. 金属学报, 2010, 46: 71
|
16 |
Xuan W D, Ren Z M, Li C J, et al. Effect of longitudinal magnetic field on the microstructure of directionally solidified superalloy DZ417G with different sizes [J]. Acta Metall. Sin., 2012, 48: 629
|
16 |
玄伟东, 任忠鸣, 李传军 等. 纵向磁场对不同尺寸定向凝固高温合金DZ417G组织的影响 [J]. 金属学报, 2012, 48: 629
doi: 10.3724/SP.J.1037.2011.00621
|
17 |
Xuan W D, Lan J, Zhao D K, et al. Effect of a high magnetic field on γ′ phase for Ni-based single crystal superalloy during directional solidification [J]. Metall. Mater. Trans., 2018, 49B: 1919
|
18 |
Ren W L, Lu L, Yuan G Z, et al. The effect of magnetic field on precipitation phases of single-crystal nickel-base superalloy during directional solidification [J]. Mater. Lett., 2013, 100: 223
|
19 |
Yu J B, Hou Y, Zhang C, et al. Effect of high magnetic field on the microstructure in directionally solidified Co-Al-W alloy [J]. Acta Metall. Sin., 2017, 53: 1620
doi: 10.11900/0412.1961.2017.00165
|
19 |
余建波, 侯 渊, 张 超 等. 静磁场对新型Co-Al-W基高温合金定向凝固组织的影响 [J]. 金属学报, 2017, 53: 1620
doi: 10.11900/0412.1961.2017.00165
|
20 |
Hou Y, Ren Z M, Wang J, et al. Effect of longitudinal static magnetic field on the columnar to equiaxed transition in directionally solidified GCr15 bearing steel [J]. Acta Metall. Sin., 2018, 54: 801
doi: 10.11900/0412.1961.2017.00557
|
20 |
侯 渊, 任忠鸣, 王 江 等. 纵向静磁场对定向凝固GCr15轴承钢柱状晶向等轴晶转变的影响 [J]. 金属学报, 2018, 54: 801
|
21 |
Ren W L, Niu C L, Ding B, et al. Improvement in creep life of a nickel-based single-crystal superalloy via composition homogeneity on the multiscales by magnetic-field-assisted directional solidification [J]. Sci. Rep., 2018, 8: 1452
doi: 10.1038/s41598-018-19800-5
pmid: 29362394
|
22 |
He S Y, Li C J, Zhan T J, et al. Reduction in microsegregation in Al-Cu alloy by alternating magnetic field [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 267
|
23 |
He S Y, Li C J, Guo R, et al. Microsegregation formation in Al-Cu alloy under action of steady magnetic field [J]. ISIJ Int., 2018, 58: 899
|
24 |
He S Y, Li C J, Liu X, et al. Research progress of microsegregation behavior during alloy solidification under steady magnetic field [J]. Found. Technol., 2022, 43: 800
|
24 |
何盛亚, 李传军, 刘 翔 等. 稳态磁场下合金凝固过程微观偏析行为研究进展 [J]. 铸造技术, 2022, 43: 800
|
25 |
Han G M, Zhang Z X, Li J G, et al. High cycle fatigue behavior of a nickel-based single crystal superalloy DD98M at 900oC [J]. Acta Metall. Sin., 2013, 48: 170
|
25 |
韩国明, 张振兴, 李金国 等. DD98M镍基单晶高温合金900℃高周疲劳行为 [J]. 金属学报, 2013, 48: 170
|
26 |
Dong G Y, You X G, Xu Z H, et al. A new model for studing the evaporation behavior of alloy elements in DD98M alloy during electron beam smelting [J]. Vacuum, 2022, 195: 110641
|
27 |
Smith R. Microsegregation measurement: Methods and applications [J]. Metall. Mater. Trans., 2018, 49B: 3258
|
28 |
Whitesell H S, Li L, Overfelt R A. Influence of solidification variables on the dendrite arm spacings of Ni-based superalloys [J]. Metall. Mater. Trans., 2000, 31B: 546
|
29 |
Vives C, Perry C. Effects of electromagnetic stirring during the controlled solidification of tin [J]. Int. J. Heat Mass Transfer, 1986, 29: 21
|
30 |
Xuan W D, Ren Z M, Li C J. Experimental evidence of the effect of a high magnetic field on the stray grains formation in cross-section change region for Ni-based superalloy during directional solidification [J]. Metall. Mater. Trans., 2015, 46A: 1461
|
31 |
Li X, Fautrelle Y, Zaidat K, et al. Columnar-to-equiaxed transitions in Al-based alloys during directional solidification under a high magnetic field [J]. J. Cryst. Growth, 2010, 312: 267
|
32 |
Li X, Fautrelle Y, Ren Z M. Influence of thermoelectric effects on the solid-liquid interface shape and cellular morphology in the mushy zone during the directional solidification of Al-Cu alloys under a magnetic field [J]. Acta Mater., 2007, 55: 3803
|
33 |
Zhang T, Ren W L, Dong J W, et al. Effect of high magnetic field on the primary dendrite arm spacing and segregation of directionally solidified superalloy DZ417G [J]. J. Alloys Compd., 2009, 487: 612
|
34 |
Xuan W D, Lan J, Liu H, et al. Effects of a high magnetic field on the microstructure of Ni-based single-crystal superalloys during directional solidification [J]. Metall. Mater. Trans., 2017, 48A: 3804
|
35 |
Curreri P A, Lee J E, Stefanescu D M. Dendritic solidification of alloys in low gravity [J]. Metall. Mater. Trans., 1988, 19A: 2671
|
36 |
Kurz W, Fisher D J. Dendrite growth at the limit of stability: Tip radius and spacing [J]. Acta Metall., 1981, 29: 11
|
37 |
Xuan W D, Liu H, Li C J, et al. Effect of a high magnetic field on microstructures of Ni-based single crystal superalloy during seed melt-back [J]. Metall. Mater. Trans., 2016, 47B: 828
|
38 |
Shen Z, Zhou B F, Zhong Y B, et al. Revealing influence mechanism of a transverse static magnetic field on the refinement of primary dendrite spacing during directional solidification [J]. J. Cryst. Growth, 2019, 517: 54
doi: 10.1016/j.jcrysgro.2019.04.010
|
39 |
Ganesan M, Dye D, Lee P D. A technique for characterizing microsegregation in multicomponent alloys and its application to single-crystal superalloy castings [J]. Metall. Mater. Trans., 2005, 36A: 2191
|
40 |
Seo S M, Jeong H W, Ahn Y K, et al. A comparative study of quantitative microsegregation analyses performed during the solidification of the Ni-base superalloy CMSX-10 [J]. Mater. Charact., 2014, 89: 43
|
41 |
Scheil E. Bemerkungen zur schichtkristallbildung [J]. Int. J. Mater. Res., 1942, 34: 70
|
42 |
Burton J A, Prim R C, Slichter W P. The distribution of solute in crystals grown from the melt. Part I. Theoretical [J]. J. Chem. Phys., 1953, 21: 1987
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|