金属学报, 2024, 60(12): 1622-1636 DOI: 10.11900/0412.1961.2022.00490

研究论文

热处理调控 α + β 两相钛合金板材的力学及导电性能

张术钱1,2, 马英杰,2, 王倩2, 齐敏1,2, 黄森森2, 雷家峰2, 杨锐2

1 中国科学技术大学 材料科学与工程学院 沈阳 110016

2 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016

Mechanical Properties and Electrical Conductivity of α + β Titanium Alloy Sheet Regulated by Heat Treatment

ZHANG Shuqian1,2, MA Yingjie,2, WANG Qian2, QI Min1,2, HUANG Sensen2, LEI Jiafeng2, YANG Rui2

1 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China

2 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

通讯作者: 马英杰,yjma@imr.ac.cn,主要从事钛合金强韧化机制的研究

责任编辑: 肖素红

收稿日期: 2022-10-07   修回日期: 2023-03-28  

基金资助: 国家重点研发计划项目(2021YFC2801801)
国家自然科学基金项目(51871225)

Corresponding authors: MA Yingjie, professor, Tel: 13840026329, E-mail:yjma@imr.ac.cn

Received: 2022-10-07   Revised: 2023-03-28  

Fund supported: National Key Research and Development Program of China(2021YFC2801801)
National Natural Science Foundation of China(51871225)

作者简介 About authors

张术钱,男,1998年生,硕士

摘要

热处理可有效调节两相钛合金的强塑性关系,但是热处理对其导电性能的影响还不明确。本工作研究了退火温度对Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr合金板材显微组织、力学性能及导电性能的影响。结果表明,轧制钛合金板材形成了沿轧向(RD)排列的条带状组织,板材织构类型为T型织构。板材在两相区退火后,双态组织中的αs/β (αs为次生α相)界面强化导致板材屈服强度升高,延伸率下降。屈服强度呈现明显各向异性,沿板材横向(TD)的屈服强度更高。而在单相区退火后,αs相明显粗化,且有晶界α相(αGB)相析出,板材延伸率急剧下降。αs相变体选择诱发形成了R型织构和c轴方向沿ND向RD偏转20°~30°的新织构,此时沿板材TD的屈服强度仍高于沿RD的屈服强度,屈服强度各向异性受织构的影响减弱。电阻率分析结果表明,钛合金板材由于条带状组织及T型织构的形成,使沿板材RD的电阻率更高。而条带状组织消失及R型织构体积分数增加,使电阻率各向异性减弱。

关键词: α + β钛合金板材; 退火处理; 显微组织; 各向异性; 拉伸性能; 电阻率

Abstract

Eddy current loss, which produces Joule heat and reduces transmission efficiency, is inevitable when the magnetic coupling is running. Magnetic couplings with high electrical resistivity alloys, such as titanium alloy, have been proven to be effective in suppressing the eddy currents. The Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr alloy sheet was a α + β titanium alloy for marine engineering with high specific strength and electrical resistivity, which was used in magnetic couplings to suppress the eddy currents. In this study, the effect of annealing temperature on the microstructure, mechanical properties, and electrical conductivity of the Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr alloy sheet was investigated. The results revealed that the band structure was arranged along the rolling direction (RD), and the as-rolled titanium alloy sheet showed a typical T-type texture with the c-axis of the α phase approximately parallel to the transverse direction (TD). A considerable increase in tensile strength and decrease in elongation after αβ region (850-920oC) annealing was thought to result from the strengthening of secondary α/β interfaces in the bimodal structure. Simultaneously, the α phase showed both T-type and R-type textures, which also resulted in higher yield strength along the TD of the sheet. Additionally, when the sheet suffered a β phase region annealing (950-1000oC), the elongation immediately decreased due to the coarseness and precipitation of the secondary α and grain boundary α phases, respectively. Meanwhile, the annealed sheet showed an R-type and a new B-type texture components with basal poles rotated 20°-30° away from the normal direction (ND) toward the RD under the influence of variant selection of secondary α phase. However, the yield strength along the TD was still higher than that in the RD, indicating that the effect of texture on yield strength anisotropy was reduced. Finally, the electrical resistivity analysis of the titanium alloy sheet indicated that the electrical resistivity along the RD of the sheet was higher when the band structure was formed and the c-axis of the α phase was concentrated in the TD. However, the disappearance of the band structure and the increase in the volume fraction of the R-type texture will reduce the anisotropy of electrical resistivity.

Keywords: α + β titanium alloy sheet; annealing treatment; microstructure; anisotropy; tensile property; electrical resistivity

PDF (5059KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

张术钱, 马英杰, 王倩, 齐敏, 黄森森, 雷家峰, 杨锐. 热处理调控 α + β 两相钛合金板材的力学及导电性能[J]. 金属学报, 2024, 60(12): 1622-1636 DOI:10.11900/0412.1961.2022.00490

ZHANG Shuqian, MA Yingjie, WANG Qian, QI Min, HUANG Sensen, LEI Jiafeng, YANG Rui. Mechanical Properties and Electrical Conductivity of α + β Titanium Alloy Sheet Regulated by Heat Treatment[J]. Acta Metallurgica Sinica, 2024, 60(12): 1622-1636 DOI:10.11900/0412.1961.2022.00490

磁力传动联轴器由内磁体、外磁体和隔离套组成,通过磁力耦合推拉效应将动密封转化为静密封,实现零泄漏[1~3]。由于磁力驱动的设计原理,始终避免不了涡流损耗问题。研究[2]表明,采用高电阻率材料可降低隔离套上的涡流损耗。隔离套在服役过程中需要承受外界载荷,同时要求具有较高的电阻率来提高传动效率,因此,结构功能一体化是金属隔离套材料追求的目标。相比于钢、铝、铜等金属材料,α + β两相钛合金的比强度高、耐腐蚀性能好、电阻率较高[4,5],近年来已经被用来制备磁力驱动装置中的隔离套部件,其力学性能和导电性能(与电阻率相关)的优化匹配是材料设计优化的关键。α + β两相钛合金具有优良的综合性能,其力学性能受到微观组织和织构的强烈影响,显微组织和织构又取决于合金成分以及热处理工艺参数[6~8],所以有必要深入分析热处理调控α + β两相钛合金板材力学性能和导电性能的内在机理。

合金显微组织决定了其性能,而热处理则是控制合金组织的有效手段。通过热处理调控可以获得具有各种优异性能的钛合金,实现对材料力学性能的优化。徐戊矫等[9]发现,β转变相中α片层的尺寸增大,滑动距离增加,最终导致Ti-6Al-4V (TC4)合金的屈服强度降低。Fan等[10]指出,固溶过程中初生α相减少以及β晶粒长大使得Ti-7333合金强度降低。王可等[11]认为,Ti90合金在单相区退火后,初生α相消失,形成了原始β晶粒粗大的片层组织,易出现微区变形不均匀,使得延伸率下降。此外,热处理过程中还存在α织构的演化,这将对合金最终的力学性能产生影响。李文渊等[12]对Ti60合金板材进行了退火处理,结果表明在两相区退火没有α新织构出现。而Cheng等[13]认为β织构以及初生α织构的存在使得TA32合金板材在两相区退火后形成了新的α织构组分。有研究[14,15]指出,退火态TC4板材中的β织构通常与原始态板材有关,而β织构的存在使得β/β界面处发生变体选择的概率增大,析出的次生α相(αs相)呈择优取向。而且初生α相(αp相)和β相满足Burgers关系时,新生成的αs相与αp相的c轴方向相近[16~18]。Obasi等[19]研究了TC4合金的织构“记忆”效应,发现随β晶粒长大,相邻β晶粒共有同一<110>晶向的概率增大,α{90°, 30°, 0°}变体择优析出。针对冷轧钛板的研究[20,21]表明,β晶粒通过αβ相变继承了α相的织构,在随后βα相变过程中发生变体选择使得α相表现出强织构。室温下,α相可开动的滑移系较少,织构的存在使得钛合金力学性能表现出各向异性。以钛合金板材中的T型织构为例,板材横向(TD)具有更高的屈服强度[6,12,22]。这说明显微组织及织构对钛合金力学性能有重要的影响,在钛合金实际应用过程中应予以重视。

热处理也能通过改变显微组织和织构影响合金的导电性能。铝合金及铜合金时效热处理后,合金中的溶质原子多以第二相的形式析出,晶格畸变程度减弱,提高了导电率(电阻率降低),这同时也起到了析出强化的作用,有利于改善强度和导电率的制约关系[23~25]。对于钛合金而言,一般不强调强度和导电率的制约关系,不同组织类型的差别主要体现在组成相的体积分数、尺寸、分布以及形貌,这些因素在调节强塑性关系时发挥了至关重要的作用,但是它们对导电性能的影响还有待研究。此外,热处理过程中钛合金板材的织构演化对导电性能的影响不可忽略。织构的存在使得材料力学性能的各向异性显著。类似地,当α晶粒存在集中取向时,由于不同晶面的密排程度不同,hcp结构金属的电阻率同样存在各向异性[26,27]。以钛合金板材中的T型织构为例,当电流方向平行于板材TD时,电子沿柱面传输,电流方向平行于板材轧向(RD)时,电子沿基面传输,由于电子在不同晶面传输时被原子核散射的几率不同,可以推测板材不同方向的电阻率存在差异,然而目前关于织构对钛合金电阻率的影响机制还不清楚。

以上研究表明,热处理能够调控钛合金的力学性能,但是热处理调控钛合金导电性能缺乏系统研究。为明确热处理对钛合金力学性能和导电性能产生的综合影响,本工作以α + β两相钛合金板材为研究对象,分析退火温度对板材显微组织和织构的影响,揭示板材显微组织和织构对拉伸性能的影响规律,明确显微组织和织构与电阻率的内在联系,为协同优化钛合金力学和导电性能提供参考,进而为两相钛合金在磁力驱动装备中的应用提供必要的材料研究基础。

1 实验方法

实验用钛合金板材的名义成分为Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr (质量分数,%),属于α + β钛合金,该合金在α + β两相区热轧后获得1.0 mm厚的成品板材,利用金相法测得β转变温度为(935 ± 5)℃。钛合金板材分别在800、850、900、920 (接近相变点)、950以及1000℃下保温1 h后空冷到室温。热处理实验在精密管式炉中进行,为防止热处理过程中的氧化,板材坯料置于充满Ar气的石英管中。

图1a为板材试样示意图。为观察热处理前后板材的显微组织,试样经水砂纸磨制抛光后用Krolls试剂(3%HF + 5%HNO3 + 92%H2O,体积分数)腐蚀,借助Axiovert 200MAT金相显微镜(OM)和MIRA3扫描电镜(SEM)分析显微组织形貌,利用Image Pro Plus 6.0软件对热处理后板材试样组织中αp相的含量和直径以及αs相的宽度进行测量。利用D8 Discover X射线衍射仪(XRD)对尺寸为22 mm (RD) × 20 mm (TD)的板材试样进行宏观织构表征,借助TexEval 2.0软件导出α相{0002}、{101¯0}晶面的极图和β相{200}、{110}晶面的极图。为进一步获得热处理前后板材组织的晶粒取向分布以及微观织构信息,将板材磨制抛光后进行振动抛光,利用MIRA3 SEM上安装的电子背散射衍射(EBSD)探头采集数据,最后利用HKL-Channel5软件分析数据。拉伸试样取样位置及尺寸分别如图1bc所示,沿板材RD和TD取样后将试样加工成R4挂片拉伸试样,拉伸实验在Zwick Z050电子拉伸试验机上进行,应变速率为3.3 × 10-4 s-1,断后延伸率由引伸计测得。板材的每个方向取3支拉伸试样进行测量,取测量平均值。同时从板材坯料RD和TD上切取尺寸为20 mm × 4 mm × 1 mm的电阻率试样各2个,不同方向电阻率试样的取样位置及尺寸分别如图1bd所示。用磨床磨去板材表面氧化层后,利用LSR-3高温电阻系数分析仪测量板材不同方向的电阻率。

图1

图1   Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr板材试样及取样示意图

Fig.1   Schematics of Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr sampling positions

(a) characterization specimen (ND—normal direction, RD—rolling direction, TD—transverse direction)

(b) tensile specimen and electrical resistivity specimen along the RD and TD

(c) tensile specimen dimension (unit: mm)

(d) electrical resistivity specimen dimension (unit: mm)


2 实验结果与讨论

2.1 原始组织

图2为Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr合金板材原始显微组织的SEM像。板材组织由拉长的α相、等轴α相和β相组成,α相的体积分数为61.85%,β相体积分数为38.15%。不同观察面上的显微组织形貌存在显著差异,RD-ND观察面有2种组织形态:一种是与RD平行的长条状α相为主的组织;另外一种是α等轴组织。αp相和β相在轧制过程中经历剧烈塑性变形后被压扁呈长条状,这些长条状α相和β相排列在一起,形成沿板材RD排列的条带状组织。而RD-TD观察面组织中的部分αp相接近等轴状,晶粒尺寸较大,一部分β相发生扭曲变形,没有观察到明显的条带状组织。这是因为板材组织中的αp相在轧制过程中受到沿板厚方向的挤压,αp相沿法向(ND)被压扁成长条状,而在RD和TD上延展。图3a给出了板材RD-ND面α晶粒的取向成像图,板材α相<0001>//TD取向的含量最高,α晶粒的晶体学c轴趋向于集中指向TD。同时图3b中的(0002)极图显示αc轴平行于TD,这符合T型织构的特征[28,29]。轧制时的应力状态可近似看成板材RD受到拉应力,板材ND受到压应力,结果使得各晶粒的某一晶面和晶向分别趋于与轧面和轧向平行。一般认为,轧制过程中α相的滑移变形机制会影响最终的织构取向[13,30,31],T型织构归因于柱面滑移系{101¯0}<112¯0>作为主要的滑移机制。图3c则显示板材β相存在{100}<110>织构,这与TC4合金中观察到的β变形织构类似[14,19]

图2

图2   Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr合金板材显微组织的SEM像

Fig.2   SEM images of Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr alloy sheet (αp—primary α phase)

(a) RD-ND plane (b) RD-TD plane


图3

图3   Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr合金板材轧向-法向(RD-ND)面α相的取向成像图以及α相和β相的极图

Fig.3   Orientation imaging map of α phase in RD-ND plane (a), and pole figures of α phase (b) and β phase (c) in Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr alloy sheet


2.2 退火组织

Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr合金板材退火处理后显微组织的SEM像如图4所示。800℃退火处理后的板材组织(图4aa1)与图2a轧制态板材组织类似,由拉长的α相、等轴α相和β相组成,仍可观察到明显的条带状组织,但组织中的α相含量减少,部分转变成β相。钛合金轧制变形后,组织中的位错密度快速增加,同时获得了足够高的应变能,这些能量可用来完成后续的回复及再结晶。由于800℃退火时,板材组织仅发生回复,部分存储应变能释放,热激活作用促进了原子扩散,位错密度降低,但不发生大角晶界的迁移,所以晶粒形状与轧制态组织类似,仍有许多畸变晶粒被保留下来[11]。经850~920℃退火处理后,板材组织中的αp相均匀分布,αs相从β基体中析出后不断长大,最后与β基体相互交错排列,形成了β转变组织(βt相) (图4b~d1)。随着退火温度的升高,原子扩散加剧,应变能进一步释放,在畸变度大的区域以多边化形成的亚晶为基础产生新的无畸变晶粒的核心,然后通过消耗周围的变形基体而长大,原来的畸变晶粒逐渐转变成无畸变的等轴新晶粒,条带状组织逐渐消失[32]。而经950~1000℃退火后,板材组织中的αp相消失,β晶粒快速长大粗化,在随后冷却的过程中,αs相从β晶粒内部析出,相同取向的αs相平行排列成α集束,在β晶界处还有晶界α相(αGB相)析出(图4e~f1),最终形成由αs相和β相组成的全片层组织[22]

图4

图4   不同温度退火空冷后Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr合金板材显微组织的SEM像

Fig.4   Low (a-f) and high (a1-f1) magnified SEM images of air-cooled Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr alloy sheet after annealing at 800oC (a, a1), 850oC (b, b1), 900oC (c, c1), 920oC (d, d1), 950oC (e, e1), and 1000oC (f, f1) for 1 h (αs—secondary α phase, αGB—grain boundary α phase, βtβ transformed phase)


图5αp相和βt相的体积分数以及αp相和αs相尺寸随退火温度的变化。其中,αp相尺寸是指αp相的直径,αs相尺寸是指αs相的宽度。由图可知,在α + β两相区退火,随退火温度升高,αp相转变成β相,αp相体积分数降低,βt相体积分数逐渐升高,920℃退火后,αp相的体积分数仅为12%。与此同时,αp相尺寸先增大后减小,900℃退火处理后,组织中的αp相尺寸最大,为3.23 μm。这是因为拉长的α晶粒内部位错密度较高,储存了大量形变能,αp相在退火处理过程中发生再结晶长大。而进一步升高退火温度后,αβ转变又使得αp相的尺寸减小。此外,850℃下退火,β相开始析出αs相,板材的微观组织类型为双态组织,进一步升高退火温度,βtαs相的宽度增加。在β单相区退火后,αp相消失,β晶粒快速长大,退火组织中的αs相也进一步粗化。

图5

图5   初生α相(αp相)和β转变组织(βt相)的体积分数以及αp相和次生α相(αs相)尺寸随退火温度的变化

Fig.5   Variations of volume fraction of αp phase and βt phase with annealing temperature (a) and variations of grain size of αp phase and αs phase with annealing temperature (b)


值得注意的是,800℃退火组织中并没有析出αs相,850℃退火后部分β相开始析出αs相,进一步升高退火温度,αs相析出更加充分。由此可见,退火温度会影响αs相的析出行为。αs相的析出主要与β相的稳定性及冷却速率有关[33,34]。由于α相转变为β相是一种扩散型相变,相变过程中存在合金元素再分配效应。黄森森等[35]发现,提高固溶温度,发生αβ转变,TC4合金中的β稳定元素沿化学势降低的方向扩散,V元素由αp相中心及相邻β相向αp相边缘扩散,β相中的V含量降低,β稳定性降低,导致TC4合金固溶空冷后析出αs相。因此,升高退火温度,合金元素再分配使得β相中的β稳定元素含量降低,β稳定性随之降低,有利于αs相的析出。另一方面,退火温度越高,在相同冷却速率条件下,需要的冷却时间也越长,也有利于αs相的析出[11]

2.3 织构演变

图67分别为利用XRD和EBSD测得的热处理态Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr板材α相极图。由图可知,通过XRD获得的宏观织构信息与微观织构信息符合较好。经800~850℃退火处理后,与原始态织构相比,板材织构类型未发生明显变化,依然呈T型织构,最大极密度值为4.5~6.0。当退火温度升高到900~920℃时,板材中除了存在T型织构外,还出现了αc轴方向与RD平行的织构组分,简单地称之为R型织构[12,13]。由图46可知,板材织构特征与其显微组织有一定的对应关系。在αs相析出之前,退火态板材中的αp相仅发生回复,其体积分数、形貌和尺寸与图2a中的αp相类似,所以板材织构类型保持不变。进一步升高退火温度,发生αβα相变,部分αp相转化为β相,αp相的体积分数逐渐降低(图5a),同时αp晶粒再结晶后长大粗化(图5b),β基体析出大量细小的αs相(图4d),织构类型发生明显的变化。因此,不同类型织构强度的变化可能与α晶粒粗化以及相转变有关。

图6

图6   利用XRD测得的不同温度退火处理后α相的极图

Fig.6   Pole figures of α phase obtained by XRD at 800oC (a), 850oC (b), 900oC (c), 920oC (d), 950oC (e), and 1000oC (f)


图7

图7   利用EBSD测得的不同温度退火后α相的极图

Fig.7   Pole figures of α phase obtained by EBSD at 800oC (a), 850oC (b), 900oC (c), 920oC (d), 950oC (e), and 1000oC (f)


α + β两相区热处理,随退火温度升高,αp相体积分数降低,而析出的αs相增多。此时,T型织构仍是主要的织构类型,但同时也形成了R型织构。由此可知,新织构的出现与呈多种取向的αs相有关。理论上,在β基体中应该随机析出αs相变体,但相邻β晶粒的<110>取向比较接近时,αs相将从β晶界择优析出[12,13]。此外,Zhao等[16]发现β相被大量αp相包围后,冷却过程中βα相变形成的αs相与周围的αp相有相近的取向。Germain等[17,36]和Gey等[37]在IMI 834合金中还观察到一些“宏区”内部αp相与αs相的(0001)面互相平行,这说明αp相可以为αs相提供形核位置,降低形核的能量。即R型织构的出现与β织构和αp相的取向有关[12,13,16,36~38]。为了明确热处理过程中R型织构的形成机制,对920℃退火处理的板材进行了EBSD分析,如图8所示。由图3c可知,原始态板材β相存在{100}<110>织构,这与TC4合金中观察到的β变形织构类似[14,19,39]。在热处理过程中,新生成的β相优先在原有β相处形核长大[14],所以在920℃退火后,退火态板材β织构与原始态板材的β织构相似(图8a)。当板材存在较强的<110>//RD织构时,相邻β晶粒共有<110>晶向的概率增大,β/β界面处发生变体选择的概率增大,易析出<0001>//RD取向的αs相,形成R型织构[15,18,40,41]图8bc分别为EBSD观察区域的前置背散射探头(fore scatter diodes,FSD)成像图以及α相的取向成像图。由图可见,920℃退火板材中取向为<0001>//TD的αp相(图8c中的取向Ⅰ)占据主导,但还存在<0001>//RD的αp相(图8c中的取向Ⅱ、Ⅲ及Ⅳ)。当αp相和β相满足Burgers关系时(图7d图8a),β晶粒的<110>晶向与周围αp相的c轴方向相近,在α/β相边界成核的αs相的c轴方向将接近相邻αp相的c轴方向以减小形核能[13,16]。取向为<0001>//RD的αp相附近将择优析出<0001>//RD的αs相。由此可见,β相织构和αp相的取向是α + β两相区热处理后形成R型织构不可忽略的因素。

图8

图8   920℃退火处理后Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr合金板材组织的EBSD分析

Fig.8   EBSD analysis results of the 920oC annealed Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr alloy sheet

(a) pole figures of residual β phase

(b) fore scatter diodes (FSD) map

(c) orientation imaging map of α phase in RD-ND plane


β单相区退火后,钛合金板材中的αp相完全消失,获得了全片层组织,板材中的T型织构消失,同时形成了R型织构和近B型织构(图6ef)。理论上,在αβα相变过程中,将生成6种不同取向的β变体,每个β晶粒内部可生成12种不同取向的αs变体[15,18,40,41],最终α相织构强度将大大降低。然而,实际上Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr合金板材经β单相区退火后α相织构依然明显,说明αβα转变时存在变体选择。Yang等[42]从热力学角度出发,认为变体选择的实质是形成某一αs变体时系统能量降低更多,从而表现为α相的局部择优取向生长。图9给出了1000℃退火处理后Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr合金板材α相和β相的织构分析。由于Burgers关系,β晶粒内的αs变体之间满足5类取向差[43,44],即10°/<0001>、60°/<112¯0>、60.83°/<1.377 1¯ 2.377 0.359>、63.26°/<10 5 5 3¯>和90°/<1 2.38 1.38 0>。与本工作观察到的现象相符,见图9a。此外,α相和β相保持良好的Burgers取向关系(图9bc),可以观察到β相的<110>晶向在RD以及沿ND向RD偏转20°~30°处存在集中取向。这种在单相区退火后形成的β织构(RD//<110>)在TC4合金中也有报道,分析认为β晶粒可以通过Burgers取向关系继承α相的取向[18,20,21,39,45],还可能是β再结晶形成了新织构[14,19]。另有研究[15,40]表明,当β相存在较强的<110>织构时,相邻β晶粒共有<110>方向的概率增大,β晶界的界面能较低,c轴平行于<110>方向的α相变体在β晶界两侧择优析出。随机选取了2类αGB相的子集(图9dg),并给出了相应αGB相的(0001)极图(图9eh)和β相的(110)极图(图9fi)。可以看到,αGB相的<0001>晶向在板材ND向RD偏转20°~30°以及RD处存在集中取向,这与图9b相符。由于板材在单相区退火后β相存在多种织构取向,这意味着板材组织中存在许多共有<110>晶向的β晶粒对,因而在冷却的过程中,αs相首先在这些β晶粒对的界面处形核,随后向界面两侧生长,由于这些αs相取向相近,在单相区退火后α相织构依然明显。

图9

图9   1000℃退火态Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr合金板材的织构分析

Fig.9   Texture analysis results of the 1000oC annealed Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr alloy sheet

(a) misorientation angle distribution of α phase

(b) (0002) pole figure of α phase obtained by XRD

(c) (110) pole figure of residual β phase obtained by XRD

(d) orientation imaging map of α lath I

(e) EBSD measured (0001) pole figure corresponding to α lath I

(f) EBSD measured (110) pole figure corresponding to residual β phase in Fig.9d

(g) orientation imaging map of α lath II

(h) EBSD measured (0001) pole figure corresponding to α lath II

(i) EBSD measured (110) pole figure corresponding to residual β phase in Fig.9g


2.4 拉伸性能

图10给出了退火处理前后Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr合金板材的室温拉伸性能。由图可知,在两相区退火,随退火温度升高,板材的屈服强度呈上升趋势,延伸率呈下降趋势;而在单相区退火后,板材的屈服强度较900℃退火先升高后降低,延伸率则急剧下降。值得注意的是,800℃退火处理后板材的屈服强度和延伸率与原始轧制板材的屈服强度和延伸率(RD:屈服强度Rp0.2 = 995 MPa,延伸率A = 8%;TD:Rp0.2 = 1088 MPa,A = 10%)基本一致,900℃退火后,板材屈服强度的上升趋势更加明显。此外,在950℃退火时,板材的屈服强度最高,但其延伸率下降到1.0%。结合图10的分析结果和图4中板材显微组织随退火温度的变化,退火温度对板材拉伸性能的影响主要分为3个阶段。第1阶段是在800℃退火,板材组织由拉长的α相、等轴α相和β相组成,同时仍可观察到大量的条带状组织。这说明在800℃退火时合金组织内部仅发生回复,部分应变能释放,与未经退火处理的板材组织特征类似,因此其屈服强度和延伸率与退火前相比变化不大。第2阶段是在850~900℃区间内退火,αs相从部分析出到完全析出,αp相的体积分数从36%下降到12%,板材的屈服强度升高,延伸率降低,退火温度主要通过改变αs相的析出行为和αp相的体积分数来影响板材的拉伸性能。850℃退火后析出的αs相可以起到强化基体的作用,并且这种强化作用随退火温度的升高而加强。一方面,由于细小αs相的强度高于等轴αp相,随着αs相含量的增加,板材的屈服强度也升高[10,46];另一方面,αs相的析出增加了组织中α/β相界面。拉伸变形过程中,相界对位错的阻碍作用使得界面强化效应显著,界面增多提高了板材的屈服强度[9]。这2方面的综合作用使得细小αs相的析出强化效应显著,导致板材强度升高。板材延伸率的降低主要与αp相的体积分数有关。板材试样进行拉伸变形时,塑性变形首先在少数αp晶粒中以滑移形式进行,当晶粒内的变形进行到一定程度后,最先开始变形的晶粒及其相邻晶粒发生转动,使得自身滑移系处于不利取向,而相邻晶粒处于有利取向,变形转移到相邻晶粒后逐渐占据越来越多的αp晶粒,降低了晶界处的位错塞积,从而不会在个别晶粒中引起应力集中而开裂[11]。此外,αp相还可以限制原始β晶粒的长大,有利于改善钛合金板材的塑性。因此,随退火温度升高,αp相的体积分数下降,降低了合金组织的协调变形能力,板材的延伸率降低。第3阶段是在950~1000℃区间内退火后,提高了板材的屈服强度,但是却牺牲了板材的延伸率。950℃退火后获得了全片层组织,α/β相界面增多,αs相的体积分数也增加,这使得950℃退火处理后板材屈服强度最高。但是,将退火温度升高到1000℃后,αs相开始长大粗化,α/β相界面减少,导致板材强度降低。此外,板材单相区退火后,等轴αp相消失,形成了全片层组织,由于集束取向一致以及连续αGB相的存在,裂纹容易沿集束截面及晶界发生长距离扩展,导致板材延伸率大幅下降。

图10

图10   不同温度退火后Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr合金板材的室温拉伸性能

Fig.10   Tensile properties of Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr alloy sheet at room temperature after annealing at different temperatures

(a) yield strength (Rp0.2) (b) elongation (A)


板材的拉伸性能除受显微组织的影响外,也受织构的影响。轧制态板材的拉伸性能存在明显的各向异性,板材TD具有更高的屈服强度。能够引起材料拉伸性能各向异性的因素有很多,如织构、组织形态、亚结构等[47,48]。已知α-Ti可动滑移系较少,基面<a>型滑移和柱面<a>型滑移是其主要滑移变形机制,锥面<c + a>滑移由于临界剪切应力过大,室温下难以开动。沿不同方向拉伸时,织构的存在使得不同滑移系开动的难易程度不同,导致不同方向的拉伸性能存在差异[47]。Schmidt因子表征了滑移系开动的难易程度,其数值越低表示滑移系越难开动,屈服强度越高。由于T型织构的形成,沿轧制态板材RD拉伸时,加载方向与c轴方向垂直,柱面<a>型滑移的Schmidt因子较大(图11a),柱面<a>型滑移系更容易启动,滑移阻力较小,RD的屈服强度较低。而沿轧制态板材TD拉伸时,加载方向与c轴方向一致,基面<a>型滑移和柱面<a>型滑移的Schmidt因子较小(图11b),室温下滑移不易开动,需较大外力才能发生塑性变形,TD屈服强度较高。因此,对于轧制态板材而言,TD屈服强度更高。

图11

图11   沿Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr合金板材轧向(RD)和横向(TD) α相不同滑移系的Schmidt因子分布

Fig.11   Schmidt factor distributions along the RD (a) and TD (b) in Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr alloy sheet with different slip systems of α phase


由于织构的存在,退火态板材的拉伸性能也存在各向异性。根据对板材织构的分析,退火温度从α + β两相区升高到β单相区后,T型织构强度先增强后减弱,同时在900和950℃退火后分别形成R型织构成分和近B型织构成分。图12为Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr合金板材在不同温度退火后α相RD和TD的反极图以及相应基面<a>型和柱面<a>型滑移系的等Schmidt因子分布图。由图12a可知,800℃退火处理后<011¯0>晶向趋向于指向板材RD,而<0001>晶向指向板材TD。根据图12fg,沿RD拉伸时,基面<a>型滑移Schmidt因子趋于0,柱面<a>型滑移Schmidt因子在0.40~0.45之间,而沿TD拉伸时,基面<a>型和柱面<a>型滑移系Schmidt因子都趋近于0。因而沿板材TD拉伸时,滑移阻力较大,拉伸强度更高,这与图11的分析结果一致。随退火温度升高,板材开始出现<0001>晶向指向板材RD的新织构。故沿RD拉伸时,基面<a>型和柱面<a>型滑移Schmidt因子也都趋于0,900℃退火处理后板材拉伸性能各向异性减弱。而在β单相区退火后,板材织构类型发生了变化,T型织构成分消失,R型织构强度增强。根据图12dfg,沿RD拉伸时,基面<a>型和柱面<a>型滑移Schmidt因子都趋近于0。因此,沿板材RD拉伸时,基面<a>型和柱面<a>型滑移系不易启动,RD的拉伸强度更高。但从图10得知,板材在β单相区退火处理后TD的拉伸强度仍旧高于RD。这说明织构并不是影响强度各向异性的唯一因素。骆雨萌等[48]发现,热轧TC4钛合金静、动态力学性能的各向异性除了与材料的织构有关,也与各向形态特征不同的组织有关。由此可知,拉伸强度各向异性还可能与组织形态特征有关。

图12

图12   Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr合金板材经不同温度退火后α相RD和TD的反极图以及基面和柱面滑移的等Schmidt因子分布图

Fig.12   Inverse pole figures of RD and TD of α phase in Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr alloy sheet after annealing at 800oC (a), 900oC (b), 920oC (c), 950oC (d), and 1000oC (e); and inverse pole figures along with isocurves of the maximum Schmidt factor for orientations in which basal slip (f) and prismatic slip (g)


2.5 导电性能

图13a为不同温度退火后Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr合金板材RD和TD的电阻率。轧制态板材RD和TD的电阻率分别为1.81和1.73 μΩ·m,表现出一定的各向异性。随退火温度升高,板材RD和TD的电阻率呈现出截然不同的变化趋势,即板材TD的电阻率逐渐升高,板材RD的电阻率逐渐降低。已知合金元素、显微组织以及织构对合金电阻率有着重要影响[26,27]。在本工作中,合金成分是固定的,因此可以排除成分对钛合金电阻率的影响。随退火温度升高,板材组织发生回复再结晶,条带状组织消失。而在板材显微组织变化的同时,α织构也在改变。由图13b可知,两相区退火时,随退火温度升高,T型织构和R型织构体积分数增加;单相区退火时,随退火温度升高,T型织构体积分数急剧减少,主要形成R型织构和B型织构。可以认为,条带状组织及T型织构的存在,使板材表现出一定的电阻率各向异性,条带状组织消失及R型织构体积分数增加,使电阻率各向异性减弱。因此,板材电阻率的变化主要与显微组织和α织构有关。

图13

图13   Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr合金板材RD和TD的电阻率以及α织构组分体积分数随退火温度的变化

Fig.13   Variations of electrical resistivity of RD and TD (a) and α texture volume fraction with annea-ling temperature (b) in Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr alloy sheet


图4可知,板材800℃退火组织由拉长的α相、等轴α相和β相组成,850℃及更高温度退火后,大量细小αs相从β基体析出,先后形成了双态组织和全片层组织。图13a表明,随退火温度升高,板材TD的电阻率逐渐升高,RD的电阻率逐渐降低,电阻率各向异性减弱。不同组织类型的差别一般体现在组成相的体积分数、尺寸、分布以及形态。800℃退火后仍可观察到沿板材RD排列的条带状组织,这类细长晶界对电子具有较强的散射作用,所以板材表现出一定的电阻率各向异性。随退火温度升高,板材组织发生回复再结晶,原来的畸变晶粒逐渐转变成无畸变的等轴新晶粒,条带状组织逐渐消失,电阻率各向异性减弱。

晶体材料不仅存在力学性能的各向异性,其物理性能同样也存在各向异性现象,即晶体材料不同晶体学方向的物理性能有所差别。六方结构材料的对称性较低,不同晶向的密排程度存在差异,在平行和垂直于c轴方向的电阻率不同。不过,与晶体材料其他性能的各向异性相比,电阻率的各向异性是比较弱的,这种各向异性仅在单晶材料或者有织构的多晶材料中体现出来。α-Ti为hcp结构金属,因此沿c轴和a轴方向的电阻率不同。根据固体电子理论的分析,金属电阻率(ρ)的表达式为[49]

ρ=m*νFnefe2lF

式中,m*为电子的有效质量;vF为Fermi面附近电子的运动速率;nef为单位体积内参与电流传导的电子数;e为电子电量;lF为Fermi面附近电子运动的平均自由程。从 式(1)可以看出,lF越小,金属的电阻率越高。α-Ti的密排面为(0001)晶面,a轴方向原子排列比c轴方向紧密。因此,与沿c轴方向运动相比,电子沿a轴方向运动的lF更小,被其他原子核散射的几率更大,导致α-Ti沿a轴方向的电阻率要高于沿c轴方向。

图14为织构类型对Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr合金板材不同方向电子散射影响的示意图。由图可知,板材中形成近B型织构后,(0001)晶面近似平行于RD-TD面,电子沿RD和TD运动时,均在α相的密排面运动,被其他原子核散射的几率相同,板材RD和TD电阻率相差不大。板材中形成R型织构后,α相的c轴平行于RD,(0001)晶面与TD平行,而电子被密排面上的原子核散射的几率更大,因此板材TD的电阻率更高。同理,板材中形成T型织构后,α相的c轴平行于TD,(0001)晶面与RD平行,板材RD的电阻率更高。结合图13b可知,800~850℃退火处理后,αc轴平行于TD的T型织构占据主导,当电流沿RD传输时,Fermi面附近运动的电子被其他原子核散射的几率更大,因此板材RD的电阻率更高。随退火温度升高,发生了同素异构转变,αp相体积分数降低,β基体析出了αs相,进而导致板材的织构特征发生改变,开始形成αc轴与RD平行的新织构。900~920℃退火后,T型织构和R型织构体积分数增加,其中T型织构的存在使板材RD的电阻率更高,而R型织构的存在使板材TD的电阻率更高,这使得板材不同方向的电阻率差值缩小。而板材在单相区退火,T型织构体积分数急剧减少,主要形成了R型织构以及近B型织构,RD和TD的电阻率相近,电阻率的各向异性进一步减弱。由此可见,板材电阻率的变化规律与α织构有关,这解释了随退火温度升高板材TD的电阻率逐渐升高,板材RD的电阻率逐渐降低的现象。

图14

图14   织构类型对Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr合金板材不同方向电子散射的影响

Fig.14   Effects of texture type on electron scattering of Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr alloy sheet in different directions


3 结论

(1) Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr板材α织构类型为T型织构,退火温度升高到900℃后,形成了αc轴与RD平行的R型织构。而在单相区退火,由于变体选择形成了c轴方向沿ND向RD偏转20°~30°的织构以及R型织构。

(2) 在两相区退火,随退火温度升高,αs/β界面增多,板材屈服强度逐渐升高,而延伸率下降。T型织构的存在使得沿板材TD的屈服强度更高。单相区退火后,全片层组织中的αs相粗化,且有αGB相析出,导致板材延伸率急剧下降,而此时板材屈服强度各向异性受织构影响减弱。

(3) 条带状组织中的细长晶界对电子具有较强的散射作用,同时电子被密排面上的原子核散射的几率更大,而板材α相存在<0001>//TD取向,即(0001)晶面与RD平行,沿板材RD的电阻率更高。随退火温度升高,条带状组织消失,板材出现α相的<0001>//RD织构组分,电阻率各向异性减弱。

参考文献

Wang L, Jia Z Y, Liu X, et al.

The key characteristics of the permanent magnet thruster for underwater vehicle

[J]. J. Harbin Univ. Sci. Technol., 2020, 25(4): 33

[本文引用: 1]

王 雷, 贾振元, 刘 鑫 .

水下机器人永磁推进器关键特性

[J]. 哈尔滨理工大学学报, 2020, 25(4): 33

[本文引用: 1]

Gong N N, Zhang B, Li J B.

Calculation of eddy losses power of magnetic transmission isolation sleeve

[J]. Mech. Eng. Autom., 2018, (6): 200

[本文引用: 1]

宫娜娜, 张 波, 李景彬.

磁力传动隔离套涡流损失功率计算

[J]. 机械工程与自动化, 2018, (6): 200

[本文引用: 1]

Kong F Y, Zhang Y, Shao F, et al.

Eddy current loss of containment shell of high-speed magnetic driving pump

[J]. Trans. Chin. Soc. Agric. Eng., 2012, 28(1): 61

[本文引用: 1]

孔繁余, 张 勇, 邵 飞 .

高速磁力泵隔离套的磁涡流损失

[J]. 农业工程学报, 2012, 28(1): 61

[本文引用: 1]

Yumak N, Aslantaş K.

A review on heat treatment efficiency in metastable β titanium alloys: The role of treatment process and parameters

[J]. J. Mater. Res. Technol., 2020, 9: 15360

[本文引用: 1]

Yang R, Ma Y J, Lei J F, et al.

Toughening high strength titanium alloys through fine tuning phase composition and refining microstructure

[J]. Acta Metall. Sin., 2021, 57: 1455

DOI      [本文引用: 1]

Titanium alloys are key materials for applications in major engineering areas, such as aerospace and marine equipment. Studies on structural titanium alloys focus on strengthening and toughening the alloys, especially the latter. The mainstream structural titanium alloys comprise both α and β phases. The optimization of the strength and toughness balance relies on the control of the compositions, volume fractions, and morphologies of both phases. In this study, some recent advances along the above line are reviewed, focusing on studies on the composition design, plastic-deformation mechanism, and microstructure tuning. Rational design of the compositions of both phases improved the deformation coordination within the α phase and across the α/β interface, suppressed the precipitation of brittle ω and α2 phases, and resulted in improved plasticity and toughness through the α-deformation twin and β-deformation-triggered phase transformation. The multiscale microstructure enhanced the strength and toughness of the titanium alloy. Using the abovementioned approaches, a series of titanium alloys with an improved strength-toughness combination were developed and fabricated. Finally, an attempt was made to predict the prospect of technology development in the field of high-strength and high-toughness titanium alloys for various applications.

杨 锐, 马英杰, 雷家峰 .

高强韧钛合金组成相成分和形态的精细调控

[J]. 金属学报, 2021, 57: 1455

[本文引用: 1]

Wu X Y, Chen Z Y, Cheng C, et al.

Effects of heat treatment on microstructure, texture and tensile properties of Ti65 alloy

[J]. Chin. J. Mater. Res., 2019, 33: 785

DOI      [本文引用: 2]

Microstructure- and texture-evolution of Ti65 Ti-alloy plate were investigated, and the tensile deformation mechanism of the plate after heat treatment with different texture were discussed. The results show that heat treatment has a significant influence on the evolution of microstructure and texture of the plate. Equiaxed-, duplex- and lamellar-microstructure would be obtained after different heat treatment. The plate with equiaxed microstructure presented a B/T texture, while the c-axis of the α-phase and the rolling direction (RD) met at a 70°~90° angle; similar texture could be found in duplex- and lamellar-microstructure, meanwhile a new texture that the c-axis of the α-phase paralleled to RD could be found in the alloy. Room temperature tensile strength of plates with duplex microstructure could be enhanced by the dislocations and sub-structures, while had little effect on tensile properties at high temperature. Texture was found to be the main factor affecting the anisotropy of tensile properties of Ti65 plates, the plate would possess good tensile properties without obvious anisotropy in tensile strength after heat treatment of 980℃/1 h/AC+700℃/4 h/AC.

吴汐玥, 陈志勇, 程 超 .

热处理对Ti65钛合金板材的显微组织、织构及拉伸性能的影响

[J]. 材料研究学报, 2019, 33: 785

DOI      [本文引用: 2]

研究了不同热处理条件下Ti65钛合金板材的显微组织和织构的变化规律,分析了板材织构的类型和热处理影响拉伸强度的机制。结果表明,热处理对板材的显微组织和织构类型具有显著的影响。通过热处理可分别得到具有等轴组织、双态组织或片层组织的板材。等轴组织板材的织构为晶体c轴与板材RD方向呈现70°~90°夹角的B/T型织构,双态组织和片层组织板材的主要织构类型与等轴组织类似,且出现晶体学c轴与RD方向平行的织构。双态组织板材内的位错和亚结构使板材的室温拉伸强度提高,但是对高温拉伸变形的阻碍能力有限。板材中的织构是影响合金力学性能各向异性的主要因素。经980℃/1 h/AC+700℃/4 h/AC热处理后的板材横、纵向拉伸强度的差异最小,且都具有较高的室温拉伸性能和最佳的650℃拉伸性能。

Du Z X, Xiao S L, Xu L J, et al.

Effect of heat treatment on microstructure and mechanical properties of a new β high strength titanium alloy

[J]. Mater. Des., 2014, 55: 183

Chen Z Q, Xu L J, Liang Z Q, et al.

Effect of solution treatment and aging on microstructure, tensile properties and creep behavior of a hot-rolled β high strength titanium alloy with a composition of Ti-3.5Al-5Mo-6V-3Cr-2Sn-0.5Fe-0.1B-0.1C

[J]. Mater. Sci. Eng., 2021, A823: 141728

[本文引用: 1]

Xu W J, Tan Y Q, Gong L H, et al.

Effect of annealing temperature and cooling rate on microstructure and properties of TC4 titanium alloy

[J]. Rare Met. Mater. Eng., 2016, 45: 2932

[本文引用: 2]

徐戊矫, 谭玉全, 龚利华 .

退火温度和冷却速率对TC4钛合金组织和性能的影响

[J]. 稀有金属材料与工程, 2016, 45: 2932

[本文引用: 2]

Fan J K, Li J S, Kou H C, et al.

Influence of solution treatment on microstructure and mechanical properties of a near β titanium alloy Ti-7333

[J]. Mater. Des., 2015, 83: 499

[本文引用: 2]

Wang K, Zhao Y Q, Jia W J, et al.

Effect of heat treatment on microstructures and properties of Ti90 alloy

[J]. Rare Met. Mater. Eng., 2021, 50: 552

[本文引用: 4]

王 可, 赵永庆, 贾蔚菊 .

热处理对Ti90钛合金显微组织及性能的影响

[J]. 稀有金属材料与工程, 2021, 50: 552

[本文引用: 4]

Li W Y, Liu J R, Chen Z Y, et al.

Effect of microstructure and texture on room temperature strength of Ti60 Ti-alloy plate

[J]. Chin. J. Mater. Res., 2018, 32: 455

DOI      [本文引用: 5]

The evolution of microstructure and texture at different temperatures and its effect on room temperature strength in Ti60 Ti-alloy plates were investigated in the present work. There was no perceivable change of the microstructure or texture after heat treatment at 700?C compared with those of the as-rolled plate. In α+β and β phase regions equiaxed primary α grains shrank and ultimately transformed to secondary α phase, and T-type texture was replaced by a new type of texture with temperature increasing. It was indicated that whether new texture formed or not was significantly affected by the percentage of primary α phase during α→β→α phase transformation: by high percentage, the primary α phase strongly induced the secondary α phase to be with the similar orientation, thereby nearly no change of the texture; by low or zero percentage, part of the formed secondary α phase with new orientation, which was hardly affected by the primary α phase and was inferred as results of α variants selection dominated by texture of β grains formed during rolling at high temperature. Room temperature strength was mainly affected by the substructure: heat treatment in the α phase region didn't eliminate the substructure, the room temperature strength is comparable to that of the as-rolled plates; heat treatment in/above α+β phase field eliminated the substructure, resulting in large reduction of room temperature strength compared with the as-rolled plates. After eliminating the substructure, the room temperature strength was impacted by the microstructure: similar room temperature strength of plates heat treated in low and high α+β phase region is related to the limited effect of the percentage of equiaxed primary α phase on the strength; the room temperature strength decreased after heat treatment in β phase region, and the decrease amplitude in certain direction was remarkably affected by texture. The degree of room temperature anisotropy was influenced by the texture and substructure: higher strength exhibited along the crystallographic c axis; while the substructure weakened the influence of the texture on anisotropy, resulting in stronger anisotropy in plates heat treated in/above α+β phase region.

李文渊, 刘建荣, 陈志勇 .

Ti60合金板材的室温强度与其显微组织和织构的关系

[J]. 材料研究学报, 2018, 32: 455

DOI      [本文引用: 5]

研究了Ti60合金板材的组织、织构随热处理温度的变化规律及其对室温强度的影响。结果表明:对于Ti60合金板材,与轧制态相比,在α单相区热处理后显微组织和织构基本不变;随着热处理温度由α+β两相区升高到β单相区,等轴初生α相体积分数减少直至完全转变为片层次生α相,T型织构成分逐渐消失,并形成新的织构。在热处理温度下初生α相的体积分数,是决定是否形成新织构的主要因素:初生α相大量存在时次生α相的取向与之相近;初生α相体积分数减少对次生α相取向的影响减弱,次生α相的{0001}晶面易形成新的集中取向,与高温轧制变形后形成的β相织构有关。板材同一方向(TD或RD)的室温强度变化主要受晶内亚结构的影响:α单相区热处理后未消除晶内亚结构,板材的室温强度与轧态接近;α+β两相区和β单相区热处理消除了晶内亚结构,使强度明显降低。消除晶内亚结构后,板材相同方向的室温强度受显微组织的影响较小:初生α相体积分数的减少对室温强度没有明显的影响,在两相区不同温度热处理的板材其室温强度相当,β单相区热处理后板材的室温强度呈降低趋势,但是不同方向上的降低幅度受织构的影响较大。织构和晶内亚结构共同影响板材室温强度的各向异性,在晶体学c轴集中取向的方向上强度较高,晶内亚结构的存在弱化织构对拉伸强度各向异性的影响,在两相区和β单相区热处理消除了晶内亚结构,使板材的各向异性增强。

Cheng C, Feng Y, Chen Z Y, et al.

Effect of annealing temperature on microstructure, texture and tensile properties of TA32 sheet

[J]. Mater. Sci. Eng., 2021, A826: 141971

[本文引用: 6]

Obasi G C, Birosca S, Leo Prakash D G, et al.

The influence of rolling temperature on texture evolution and variant selection during αβα phase transformation in Ti-6Al-4V

[J]. Acta Mater., 2012, 60: 6013

[本文引用: 5]

Stanford N, Bate P S.

Crystallographic variant selection in Ti-6Al-4V

[J]. Acta Mater., 2004, 52: 5215

[本文引用: 4]

Zhao Z B, Wang Q J, Liu J R, et al.

Effect of heat treatment on the crystallographic orientation evolution in a near-α titanium alloy Ti60

[J]. Acta Mater., 2017, 131: 305

[本文引用: 4]

Germain L, Gey N, Humbert M, et al.

Analysis of sharp microtexture heterogeneities in a bimodal IMI 834 billet

[J]. Acta Mater., 2005, 53: 3535

[本文引用: 1]

Zheng G M, Li L, Mao X N, et al.

Variant selection during titanium alloy BCC↔HCP phase transformation and its effect on crystal orientation

[J]. Mater. Rep., 2019, 33: 2910

[本文引用: 4]

郑国明, 李 磊, 毛小南 .

钛合金BCC↔HCP相变的变体选择及其对晶体取向的影响

[J]. 材料导报, 2019, 33: 2910

[本文引用: 4]

Obasi G C, Birosca S, da Fonseca J Q, et al.

Effect of β grain growth on variant selection and texture memory effect during αβα phase transformation in Ti-6Al-4V

[J]. Acta Mater., 2012, 60: 1048

[本文引用: 4]

Gey N, Humbert M.

Characterization of the variant selection occurring during the αβα phase transformations of a cold rolled titanium sheet

[J]. Acta Mater., 2002, 50: 277

[本文引用: 2]

Zhu Z S, Gu J L, Liu R Y, et al.

Variant selection and its effect on phase transformation textures in cold rolled titanium sheet

[J]. Mater. Sci. Eng., 2000, A280: 199

[本文引用: 2]

Lütjering G, Williams J C. Titanium [M]. 2nd Ed., Berlin: Springer-Verlag, 2007: 247

[本文引用: 2]

Hou J P, Wang Q, Zhang Z J, et al.

Nano-scale precipitates: The key to high strength and high conductivity in Al alloy wire

[J]. Mater. Des., 2017, 132: 148

[本文引用: 1]

Hou J P, Sun P F, Wang Q, et al.

Breaking the trade-off relation between strength and electrical conductivity: Heterogeneous grain design

[J]. Acta Metall. Sin., 2022, 58: 1467

DOI     

The trade-off relationship between the strength and the electrical conductivity has been the bottleneck restricting the development of conductive metallic materials with high strength and high electrical conductivity. In this study, commercially pure Al wires and commercially pure Cu wires with various grain characteristics were prepared by the cold-drawing process to investigate the influencing mechanisms of grain on strength and electrical conductivity. Surprisingly, the synchronous increase in strength and electrical conductivity may be achieved both for the commercially pure Al wires and commercially pure Cu wires in the later stage of cold-drawing deformation, which shatters the traditional constrictive relationship between the strength and the electrical conductivity. Additionally, the microstructure investigation demonstrates that with the increase of drawing deformation, the axial grains were lengthened, the radial grains were increasingly polished, and the radial <001> texture was transformed to <111> texture. Finally, the heterogeneous microstructures, including heterogeneous grain formation and heterogeneous crystal orientation were formed. The theoretical analysis reveals that the grain width and texture mainly influence the strength, and the grain length primarily influences the electrical conductivity. Consequently, the axial long grain, the radial fine grain, and radial hard orientation texture are proved to be the primary mechanisms causing the synchronous improvement of strength and electrical conductivity of commercially pure Al wires and commercially pure Cu wires. This suggests that the heterogeneous grain design may be considered a useful method to create conductive metallic materials with high strength and high electrical conductivity.

侯嘉鹏, 孙朋飞, 王 强 .

突破强度-导电率制约关系: 晶粒异构设计

[J]. 金属学报, 2022, 58: 1467

DOI     

采用冷拉拔工艺制备了具有不同晶粒特征的工业纯Al线和工业纯Cu线,研究了晶粒对强度和导电率的影响机制。性能测试结果表明,拉拔变形后期,工业纯Al线和工业纯Cu线的强度和导电率同步提高,打破了强度和导电率传统的倒置关系。微观组织观察发现:随着拉拔变形量增大,轴向晶粒被拉长,径向晶粒逐渐细化,径向&lt;001&gt;织构向&lt;111&gt;织构转变,形成了晶粒形状异构和晶体取向异构的微观组织结构。理论分析表明:晶粒宽度和织构主要影响强度,晶粒长度主要影响导电率;提出了轴向长晶粒、径向细晶粒和径向硬取向织构是工业纯Al线和工业纯Cu线强度和导电率同步提高的根本原因。

Li R, Zuo X W, Wang E G.

Microstructure, resistivity, and hardness of aged Ag-7wt.%Cu alloy

[J]. Acta Phys. Sin., 2017, 66: 027401

[本文引用: 1]

李 蕊, 左小伟, 王恩刚.

时效Ag-7wt.%Cu合金的微观组织、电阻率和硬度

[J]. 物理学报, 2017, 66: 027401

[本文引用: 1]

Ying T, Zheng M Y, Li Z T, et al.

Thermal conductivity of as-cast and as-extruded binary Mg-Al alloys

[J]. J. Alloys Compd., 2014, 608: 19

[本文引用: 2]

Yuan J W, Zhang K, Li T, et al.

Anisotropy of thermal conductivity and mechanical properties in Mg-5Zn-1Mn alloy

[J]. Mater. Des., 2012, 40: 257

[本文引用: 2]

Leyens C, Peters M. Titanium and Titanium Alloys [M]. Weinheim: Wiley-VCH Verlag GmbH, 2003: 24

[本文引用: 1]

Liu S L, Lu Y F, Huang X M, et al.

Research situation on the effect of manufacturing process and heat treatment on the titanium alloy sheet texture

[J]. Metall. Eng., 2015, 2: 144

[本文引用: 1]

刘松良, 卢影锋, 黄先明 .

加工工艺及热处理对钛合金板材织构影响的研究现状

[J]. 冶金工程, 2015, 2: 144

[本文引用: 1]

Li W Y, Chen Z Y, Liu J R, et al.

Rolling texture and its effect on tensile property of a near-α titanium alloy Ti60 plate

[J]. J. Mater. Sci. Technol., 2019, 35: 790

[本文引用: 1]

Zhao Z B, Wang Q J, Liu J R, et al.

Texture of Ti60 alloy precision bars and its effect on tensile properties

[J]. Acta Metall. Sin., 2015, 51: 561

DOI      [本文引用: 1]

<p>Microstructure and texture of titanium alloy are determined by thermomechanical and heat treatments and can significantly affect the mechanical properties of the final products. In this work, the microstructure and texture evolution during the heat treatment in <em>&alpha;</em>/<em>&beta;</em> and <em>&beta;</em> phase field in Ti60 precision forging bars were investigated. The results implied that the actual deformation temperature gradually decreased during precision forging processes. The microstructure and texture of Ti60 bar were determined by the finish forging temperature and the diameter, and strong microtexture macrozones existed in the forged Ti60 bar. For the bar with diameter of 45 mm (D45), the finish forging temperature fell in the lower temperature region of the <em>&alpha;</em>/<em>&beta;</em> phase field, and the main <em>&alpha;</em> textures in these bars were <0001> and <inline-formula></inline-formula><mml:math xmlns="http://www.founder.com/PDMLSchema/2009/main" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mtable><mml:mtr><mml:mtd><mml:mrow><mml:mo><</mml:mo> <mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mstyle displaystyle="true"> <mml:mover accent="true"><mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:mrow> <mml:mo>?</mml:mo> </mml:mover></mml:mstyle><mml:mn>0</mml:mn> <mml:mo>></mml:mo></mml:mrow></mml:mtd> </mml:mtr></mml:mtable></mml:math>fiber texture components in initial Ti60 bar. The similarity of the microstructure and texture were found after heat treatment at 950 ℃. The intensity of <inline-formula></inline-formula><mml:math xmlns="http://www.founder.com/PDMLSchema/2009/main" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mtable><mml:mtr><mml:mtd><mml:mrow><mml:mo><</mml:mo> <mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mstyle displaystyle="true"> <mml:mover accent="true"><mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:mrow> <mml:mo>?</mml:mo> </mml:mover></mml:mstyle><mml:mn>0</mml:mn> <mml:mo>></mml:mo></mml:mrow></mml:mtd> </mml:mtr></mml:mtable></mml:math>fiber texture gradually decreased while that of <0001> fiber texture increased with the increase of the heat treatment temperature. Heat treatments have little influence on the strength of forged Ti60 bars of D45, while their ductility was reduced after <em>&beta;</em> heat treatment. For the bar with diameter of 30 mm (D30), the finish forging temperature was below the <em>&alpha;</em>/<em>&beta;</em> phase field, and the main <em>&alpha;</em> texture in those bars was <inline-formula></inline-formula><mml:math xmlns="http://www.founder.com/PDMLSchema/2009/main" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mtable><mml:mtr><mml:mtd><mml:mrow><mml:mo><</mml:mo> <mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mstyle displaystyle="true"> <mml:mover accent="true"><mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:mrow> <mml:mo>?</mml:mo> </mml:mover></mml:mstyle><mml:mn>0</mml:mn> <mml:mo>></mml:mo></mml:mrow></mml:mtd> </mml:mtr></mml:mtable></mml:math>fiber texture component. The intensity of <0001> fiber texture in those bars increased while that of <inline-formula></inline-formula><mml:math xmlns="http://www.founder.com/PDMLSchema/2009/main" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mtable><mml:mtr><mml:mtd><mml:mrow><mml:mo><</mml:mo> <mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mstyle displaystyle="true"> <mml:mover accent="true"><mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:mrow> <mml:mo>?</mml:mo> </mml:mover></mml:mstyle><mml:mn>0</mml:mn> <mml:mo>></mml:mo></mml:mrow></mml:mtd> </mml:mtr></mml:mtable></mml:math>fiber texture gradually decreased with the increase of the heat treatment temperature. Their room temperature strength significantly increased with the increase of the heat treatment temperature, and yield strength and tensile strength reached to 1086 and 1144 MPa, respectively, but the elongation only 3.3% after <em>&beta;</em> heat treatment.</p>

赵子博, 王清江, 刘建荣 .

Ti60合金棒材中的织构及其对拉伸性能的影响

[J]. 金属学报, 2015, 51: 561

DOI      [本文引用: 1]

将&alpha;+&beta;两相区精锻, 直径为30和45 mm (分别定义为D30和D45)的Ti60棒材分别在950, 1000和1050 ℃进行固溶+时效热处理, 研究了热处理温度对棒材织构和拉伸性能的影响. 结果表明, D45棒材锻态组织中, 棒材轴向与&alpha;相的或 10 1 ? 0 > 方向平行的丝织构较强; 950 ℃热处理后显微组织和织构变化不明显. 随固溶温度升高, &alpha;相的丝织构增强, 而 10 1 ? 0 > 丝织构密度减弱. 固溶温度对棒材强度的影响不大. D30棒材锻态组织中主要存在 10 1 ? 0 > 方向的丝织构; 随固溶温度升高, 丝织构逐渐增强, 棒材的室温强度显著升高.

Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science [M]. 3rd Ed., Shanghai: Shanghai Jiaotong University Press, 2010: 197

[本文引用: 1]

胡赓祥, 蔡 珣, 戎咏华. 材料科学基础 [M]. 第 3版, 上海: 上海交通大学出版社, 2010: 197

[本文引用: 1]

Xue Q, Ma Y J, Lei J F, et al.

Evolution of microstructure and phase composition of Ti-3Al-5Mo-4.5V alloy with varied β phase stability

[J]. J. Mater. Sci. Technol., 2018, 34: 2325

DOI      [本文引用: 1]

The microstructure evolution and phase composition of an α + β titanium alloy, Ti-3Al-5Mo-4.5V (wt.%), have been investigated. Electron probe micro analysis (EPMA) quantitative results manifest that the stability of β phase decreases with increasing quenching temperature, which is influenced by the significant variation of β-stabilizing elements concentration. Detailed microstructure analysis shows that the β → ω phase transformation does occur when quenching at 750 °C and 800 °C. The ω-reflections change from incommensurate ω-spots (750 °C) to ideal ω-spots (800 °C) as the β stability of the alloy decreases. Further the decrease of β phase stability encourages the formation of athermal α′′ martensite, which has the following orientation relationships: [111]β//[110]α′′, [100]β//[100]α′′ and [-110]β//[00-1]α′′ with respect to the β matrix.

Huang S S, Zhang J H, Ma Y J, et al.

Influence of thermal treatment on element partitioning in α + β titanium alloy

[J]. J. Alloys Compd., 2019, 791: 575

[本文引用: 1]

Huang S S, Ma Y J, Zhang S L, et al.

Influence of alloying elements partitioning behaviors on the microstructure and mechanical properties in α + β titanium alloy

[J]. Acta Metall. Sin., 2019, 55: 741

[本文引用: 1]

黄森森, 马英杰, 张仕林 .

α + β两相钛合金元素再分配行为及其对显微组织和力学性能的影响

[J]. 金属学报, 2019, 55: 741

DOI      [本文引用: 1]

研究了两相区固溶温度及固溶后冷速对Ti-6Al-4V (TC4)合金元素再分配行为的影响,利用EPMA技术表征了初生α相(α<sub>p</sub>)以及β转变区域(β<sub>t</sub>)的元素浓度,考察了β<sub>t</sub>显微组织尺寸随固溶温度及元素浓度的变化。结果表明:随着固溶温度升高,β<sub>t</sub>区域元素浓度变化显著,表现为Al含量升高、V含量降低,而α<sub>p</sub>晶粒中元素浓度变化较小,导致两区域元素浓度差异减小;同一固溶温度下,以不同冷却方式(水冷、空冷及炉冷)冷却的显微组织及元素分布显示,冷却速率越低,α<sub>p</sub>比例越高,α<sub>p</sub>与β<sub>t</sub>之间元素浓度差异越明显。合金经固溶水冷、空冷后,β<sub>t</sub>分别为淬火马氏体、次生α相(α<sub>s</sub>)+残余β相,2种冷速下β<sub>t</sub>的显微组织尺寸均与高温β相内的元素浓度水平有关,即β<sub>t</sub>内部显微组织尺寸受固溶温度的显著影响。利用纳米压痕技术表征了不同固溶温度下微区域(α<sub>p</sub>、β<sub>t</sub>)的力学特征,结果表明,密排六方(hcp)晶格α<sub>p</sub>本身呈现的力学行为的各向异性对其纳米压痕性能起决定性作用,而β<sub>t</sub>的弹性模量及硬度主要受α<sub>s</sub>片层尺寸的影响。最后讨论了“固溶温度-微区元素浓度-微区显微组织-微区力学性能”之间的关系。

Germain L, Gey N, Humbert M, et al.

Texture heterogeneities induced by subtransus processing of near α titanium alloys

[J]. Acta Mater., 2008, 56: 4298

[本文引用: 2]

Gey N, Bocher P, Uta E, et al.

Texture and microtexture variations in a near-α titanium forged disk of bimodal microstructure

[J]. Acta Mater., 2012, 60: 2647

[本文引用: 1]

Zhou Y, Wang K, Xin R L, et al.

Effect of special primary α grain on variant selection of secondary α phase in a near-α titanium alloy

[J]. Mater. Lett., 2020, 271: 127766

[本文引用: 1]

Obasi G C, Moat R J, Leo Prakash D G, et al.

In situ neutron diffraction study of texture evolution and variant selection during the αβα phase transformation in Ti-6Al-4V

[J]. Acta Mater., 2012, 60: 7169

[本文引用: 2]

Bhattacharyya D, Viswanathan G B, Denkenberger R, et al.

The role of crystallographic and geometrical relationships between α and β phases in an α/β titanium alloy

[J]. Acta Mater., 2003, 51: 4679

[本文引用: 3]

Zhao Z B, Wang Q J, Hu Q M, et al.

Effect of β (110) texture intensity on α-variant selection and microstructure morphology during βα phase transformation in near α titanium alloy

[J]. Acta Mater., 2017, 126: 372

[本文引用: 2]

Yang Y, Lu Y F, Ge P, et al.

Variant selection of βα phase transformation in titanium alloys

[J]. Mater. Sci., 2014, 4: 197

[本文引用: 1]

Beladi H, Chao Q, Rohrer G S.

Variant selection and intervariant crystallographic planes distribution in martensite in a Ti-6Al-4V alloy

[J]. Acta Mater., 2014, 80: 478

[本文引用: 1]

Lei L, Zhao Y Q, Wu C, et al.

Variant selection, coarsening behavior of α phase and associated tensile properties in an α + β titanium alloy

[J]. J. Mater. Sci. Technol., 2022, 99: 101

DOI      [本文引用: 1]

Effect of cooling rates, i.e., air cooling and furnace cooling, after solution in α+β phase-field on variant selection, coarsening behavior of α phase and microstructure evolution were investigated in α+β TC21 alloy. The textures of primary α (αp) and lamellar α (αL) in β phase transformation microstructure (βt) were analysed separately, and the orientation relationship among αp, αL and the parent β phase were studied. In addition, the influence of the microstructure characteristics on the tensile properties was investigated. The results showed that all parent β grains, despite their different orientations, produced 12 ideal αL variants with the same texture components and interweave to form a basketweave βt structure under the air-cooling condition. The αp without Burgers orientation relationship (BOR) with β phase exhibited obviously texture component without overlapping the αL texture component. The volume fraction of αp in the furnace-cooled sample (about 50%) was higher than that of the air-cooled sample (about 12%), while the size of it slightly increased with decreasing the cooling rate. In each β grain, the thick αL in the same orientation formed an α colony. A typical 3 variant colonies which were related to each other were observed. Consequently, the αL spatial orientation distribution showed more heterogeneity. Moreover, the BOR between αp and β and the same orientation of some αL and the surrounding αp grains resulting in the overlapping of αp texture component and αL texture component. At last, the relationship between microstructure and tensile properties was analysed.

Zhu Z S, Gu J L, Chen N P.

Variant selection in αβα phase transformation of cold rolled titanium sheet

[J]. Scr. Mater., 1996, 34: 1281

[本文引用: 1]

Li C L, Mi X J, Ye W J, et al.

A study on the microstructures and tensile properties of new beta high strength titanium alloy

[J]. J. Alloys Compd., 2013, 550: 23

[本文引用: 1]

Cheng C, Chen Z Y, Qin X S, et al.

Microstructure, texture and mechanical property of TA32 titanium alloy thick plate

[J]. Acta Metall. Sin., 2020, 56: 193

[本文引用: 2]

程 超, 陈志勇, 秦绪山 .

TA32钛合金厚板的微观组织、织构与力学性能

[J]. 金属学报, 2020, 56: 193

[本文引用: 2]

Luo Y M, Liu J X, Li S K, et al.

Anisotropy of mechanical properties and influencing factors of hot rolling TC4 titanium alloy

[J]. Rare Met. Mater. Eng., 2014, 43: 2692

[本文引用: 2]

骆雨萌, 刘金旭, 李树奎 .

热轧TC4钛合金力学性能各向异性及影响因素分析

[J]. 稀有金属材料与工程, 2014, 43: 2692

[本文引用: 2]

Wu D M. Fundamentals of Solid State Physics [M]. Beijing: Higher Education Press, 2007: 84

[本文引用: 1]

吴代鸣. 固体物理基础 [M]. 北京: 高等教育出版社, 2007: 84

[本文引用: 1]

/