Please wait a minute...
金属学报  2017, Vol. 53 Issue (10): 1323-1330    DOI: 10.11900/0412.1961.2017.00265
  研究论文 本期目录 | 过刊浏览 |
MRI磁兼容合金研究
任伊宾1(), 李俊1,2, 王青川1, 杨柯1
1 中国科学院金属研究所 沈阳 110016
2 中国科学技术大学材料科学与工程学院 沈阳 110016
A Review: Research on MR-Compatible Alloys in MRI
Yibin REN1(), Jun LI1,2, Qingchuan WANG1, Ke YANG1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

任伊宾, 李俊, 王青川, 杨柯. MRI磁兼容合金研究[J]. 金属学报, 2017, 53(10): 1323-1330.
Yibin REN, Jun LI, Qingchuan WANG, Ke YANG. A Review: Research on MR-Compatible Alloys in MRI[J]. Acta Metall Sin, 2017, 53(10): 1323-1330.

全文: PDF(3707 KB)   HTML
摘要: 

磁共振成像(MRI)是医学领域中不可或缺的影像诊断技术。目前常规使用的金属医疗器械包括植入物在MRI下均会产生较大程度的伪影,影响病理诊断分析。尽管临床上通过技术操作可以减小金属伪影,但伪影仍然无法完全消除。本文综述了目前MRI磁兼容合金的研究进展,包括锆合金、铌合金、铜合金等。与临床应用的医用金属材料相比,本文所述磁兼容合金均能有效降低或消除MRI下的金属伪影。随着MRI诊断技术的普及,可在MRI下精确诊断的生物材料与器械会越来越受到重视,因此开发综合性能优异的磁兼容合金是医用金属材料的发展趋势之一。

关键词 磁共振成像金属伪影磁兼容锆合金铜合金    
Abstract

Magnetic resonance imaging (MRI) is widely used in clinical applications. Metallic medical devices and implants used under MRI normally produce noticeable artifact which seriously affects image quality. Therefore, the artifact is an essential problem that should be solved for metallic biomaterials. Although artifact can be reduced by technical manipulation, it cannot be eliminated completely. This paper summarizes recent studies on MR-compatible alloys such as Zr alloys, Nb alloys and Cu alloys. Compared with normally clinical metallic materials, MR-compatible alloys described in this article can effectively reduce or eliminate artifacts under MRI. MR-compatibility will become an essential property to implant materials and devices. Thus developing metallic biomaterials with low magnetic susceptibility and excellent comprehensive performance becomes more important.

Key wordsmagnetic resonance imaging    metallic artifact    MR-compatibility    Zr alloy    Cu alloy
收稿日期: 2017-07-03     
ZTFLH:  R318.08  
基金资助:国家自然科学基金项目No.31370976
作者简介:

作者简介 任伊宾,男,1975年生,副研究员,博士

图1  金属材料的伪影[8]
Material χv / 10-6 Material χv / 10-6
Bi -164 Al 20.7
Au -34 Zr 109
Ag -24 Ti 170
Zn -15.7 Ta 178
Cu -9.63 Ti6Al4V alloy 179[12]
Water (37 ℃) -9.05 Nb 237
α-Sn -23 NiTi alloy 245
Human tissue -11~-7 Pt 279
Si -4.2 Pd 806
β-Sn 2.4 L605 alloy 960[13]
Mg 11.7 Stainless steel 3520~6700
表1  不同金属材料的体积磁化率[7,12,13]
图2  冷变形量对冷加工态纯Zr与Zr-14Nb合金质量磁化率的影响[17]
图3  铸态Zr-Ru[14]、Zr-Nb[16]、Zr-Mo[18]合金的质量磁化率与合金元素含量的关系
图4  纯Zr、纯Ag、Zr-Ag合金的典型MR伪影图像及三维重建的伪影图像[20]
Alloy Hardness σ0.2 / MPa σb / MPa δ / % E / GPa
Nb28Ta3.5W1.3Zr - 350 476 16.7 129
Nb-60Ta-2Zr 1705 MPa 332 432 20 142
ABI (Pd-Ag) 220 HV - - 30 110
表2  Nb28Ta3.5W1.3Zr[22]与Nb60Ta2Zr[24]、ABI[27]合金的力学性能
图5  含植入物的兔组织的典型MR图像[21]
图6  10种不同金属在同一条件(主磁场B0=3 T快速自旋回波(FSE))下的三维重建伪影[33]
图7  铜合金支架(箭头)植入猪肾动脉后的伪影表现(B0=1.5 T,使用MR血管造影技术,支架内腔完全无伪影)[31]
图8  纯Cu、硅黄铜和纯Ti的典型MR伪影图像(B0=3.0 T,FSE)[32]
图9  纯Zn在3 T下的伪影表现(FSE,样品平行于B0)
[1] Wang W D.Research on magnetic resonance imaging guided bone biopsy robot and key technologies [D]. Xi'an: Northwestern Polytechnical University, 2014(王文东. 磁共振图像向导的骨活检手术机器人关键技术研究 [D]. 西安: 西北工业大学, 2014)
[2] Schenck J F.Safety of strong, static magnetic fields[J]. J. Magn. Reson. Imaging, 2000, 12: 2
[3] Tian J G, Liu M L, Xia Z F, et al.Safety factors of magnetic resonance imaging[J]. Chin. J. Magn. Reson., 2000, 17: 505(田建广, 刘买利, 夏照帆等. 磁共振成像的安全性[J]. 波谱学杂志, 2000, 17: 505)
[4] Liu Y, Long D, Qian X M.Safety factors of magnetic resonance imaging and cardiac metal implants[J]. Chin. J. Misdiagn., 2007, 7: 7234(刘瑜, 龙丹, 钱晓明. 磁共振成像的安全性与心脏金属移植物[J]. 中国误诊学杂志, 2007, 7: 7234)
[5] Luo M M.Research on the issues of fetal magnetic resonance safety [D]. Guangzhou: Southern Medical University, 2015(罗敏敏. 胎儿磁共振安全问题研究 [D]. 广州: 南方医科大学, 2015)
[6] Syed M A, Mohiaddin R H.Magnetic Resonance Imaging of Congenital Heart Disease[M]. London: Springer, 2012: 39
[7] Schenck J F.The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds[J]. Med. Phys., 1996, 23: 815
[8] Lee M J, Kim S, Lee S A, et al.Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi-detector CT[J]. Radiographics, 2007, 27: 791
[9] Nitatori T, Hanaoka H, Hachiya J, et al.MRI artifacts of metallic stents derived from imaging sequencing and the ferromagnetic nature of materials[J]. Radiat. Med., 1999, 17: 329
[10] Bernstein M A, Huston J, Ward H A.Imaging artifacts at 3.0 T[J]. J. Magn. Reson. Imaging, 2006, 24: 735
[11] Bagheri M H, Hosseini M M, Emami M J, et al.Metallic artifact in MRI after removal of orthopedic implants[J]. Eur. J. Radiol., 2012, 81: 584
[12] Zhou F Y, Qiu K J, Li H F, et al.Screening on binary Zr-1X (X= Ti, Nb, Mo, Cu, Au, Pd, Ag, Ru, Hf and Bi) alloys with good in vitro cytocompatibility and magnetic resonance imaging compatibility[J]. Acta Biomater., 2013, 9: 9578
[13] Zhou D B, Wang S P, Wang S G, et al.Bulk metallic glasses: MRI compatibility and its correlation with magnetic susceptibility[J]. J. Mater. Sci. Technol., 2016, 32: 496
[14] Zhou F Y.Microstructure and property of novel Zr-based alloys for biomedical application [D]. Harbin: Harbin Harbin Engeering University, 2014(周飞宇. 新型医用锆基合金的组织结构与性能研究 [D]. 哈尔滨: 哈尔滨工程大学, 2014)
[15] Salda?a L, Méndez-Vilas A, Jiang L, et al.In vitro biocompatibility of an ultrafine grained zirconium[J]. Biomaterials, 2007, 28: 4343
[16] Kondo R, Nomura N, Suyalatu, et al. Microstructure and mechanical properties of as-cast Zr-Nb alloys[J]. Acta Biomater., 2011, 7: 4278
[17] Kondo R, Shimizu R, Nomura N, et al.Effect of cold rolling on the magnetic susceptibility of Zr-14Nb alloy[J]. Acta Biomater., 2013, 9: 5795
[18] Suyalatu, Nomura N, Oya K, et al. Microstructure and magnetic susceptibility of as-cast Zr-Mo alloys[J]. Acta Biomater., 2010, 6: 1033
[19] Suyalatu, Kondo R, Tsutsumi Y, et al. Effects of phase constitution on magnetic susceptibility and mechanical properties of Zr-rich Zr-Mo alloys[J]. Acta Biomater., 2011, 7: 4259
[20] Imai H, Tanaka Y, Nomura N, et al.Magnetic susceptibility, artifact volume in MRI, and tensile properties of swaged Zr-Ag composites for biomedical applications[J]. J. Mech. Behav. Biomed. Mater., 2017, 66: 152
[21] Zhou D B, Wang S G, Wang S P, et al.MRI compatibility of several early transition metal based alloys and its influencing factors[J]. J. Biomed. Mater. Res. Part B, 2017, doi: 10.1002/jbm.b.33832
[22] O'Brien B, Stinson J, Carroll W. Development of a new niobium-based alloy for vascular stent applications[J]. J. Mech. Behav. Biomed. Mater., 2008, 1: 303
[23] O'Brien B J, Stinson J S, Boismier D A, et al. Characterization of an NbTaWZr alloy designed for magnetic resonance angiography compatible stents[J]. Biomaterials, 2008, 29: 4540
[24] Li H Z, Xu J.MRI compatible Nb-Ta-Zr alloys used for vascular stents: Optimization for mechanical properties[J]. J. Mech. Behav. Biomed. Mater., 2014, 32: 166
[25] Li H Z, Zhao X, Xu J.MRI-compatible Nb-60Ta-2Zr alloy for vascular stents: Electrochemical corrosion behavior in simulated plasma solution[J]. Mater. Sci. Eng., 2015, C56: 205
[26] Li X M, Li H Z, Wang S P, et al.MRI-compatible Nb-60Ta-2Zr alloy used for vascular stents: Haemocompatibility and its correlation with protein adsorption[J]. Mater. Sci. Eng., 2014, C42: 385
[27] van Dijk L C, van Holten J, van Dijk B P, et al. A precious metal alloy for construction of MR imaging-compatible balloon-expandable vascular stents[J]. Radiology, 2001, 219: 284
[28] Wataha J C, Shor K.Palladium alloys for biomedical devices[J]. Expert Rev. Med. Devices, 2010, 7: 489
[29] Liu Y B, Hu D Y, Xia L M, et al.Research about interventional magnetic resonance imaging[J]. Radiol. Pract., 2003, 18: 611(刘于宝, 胡道予, 夏黎明等. 介入性磁共振器械的研究[J]. 放射学实践, 2003, 18: 611)
[30] Liu P, Ren F Z, Jia S G.Copper Alloy and Its Application [M]. Beijing: Chemical Industry Press, 2007: 1(刘平, 任凤章, 贾淑果. 铜合金及其应用 [M]. 北京: 化学工业出版社, 2007: 1)
[31] Spuentrup E, Ruebben A, Stuber M, et al.Metallic renal artery MR imaging stent: Artifact-free lumen visualization with projection and standard renal MR angiography[J]. Radiology, 2003, 227: 897
[32] Li J, Ren Y B, Ibrahim M, et al.MR-compatible silicon brass for magnetic resonance guided biopsy application[J]. Mater. Lett., 2017, 202: 162
[33] Imai H, Tanaka Y, Nomura N, et al.Three-dimensional quantification of susceptibility artifacts from various metals in magnetic resonance images[J]. Acta Biomater., 2013, 9: 8433
[34] Buecker A, Spuentrup E, Ruebben A, et al.Artifact-free in-stent lumen visualization by standard magnetic resonance angiography using a new metallic magnetic resonance imaging stent[J]. Circulation, 2002, 105: 1772
[35] Spuentrup E, Ruebben A, Mahnken A, et al.Artifact-free coronary magnetic resonance angiography and coronary vessel wall imaging in the presence of a new, metallic, coronary magnetic resonance imaging stent[J]. Circulation, 2005, 111: 1019
[36] Astary G W, Peprah M K, Fisher C R, et al.MR measurement of alloy magnetic susceptibility: Towards developing tissue-susceptibility matched metals[J]. J. Magn. Reson., 2013, 233: 49
[37] Weiss C R, Nour S G, Lewin J S.MR-guided biopsy: A review of current techniques and applications[J]. J. Magn. Reson. Imaging, 2008, 27: 311
[38] Dogan B E, Le-Petross C H, Stafford J R, et al. MRI-guided vacuum-assisted breast biopsy performed at 3 T with a 9-gauge needle: preliminary experience[J]. Am. J. Roentgenol., 2012, 199: W651
[39] Shafiei F, Honda E, Takahashi H, et al.Artifacts from dental casting alloys in magnetic resonance imaging[J]. J. Dent. Res., 2003, 82: 602
[40] Taniyama T, Sohmura T, Etoh T, et al.Metal artifacts in MRI from non-magnetic dental alloy and its FEM analysis[J]. Dent. Mater. J., 2010, 29: 297
[41] Silvestri Z, Davis R S, Genevès G, et al.Volume magnetic susceptibility of gold-platinum alloys: Possible materials to make mass standards for the watt balance experiment[J]. Metrologia, 2003, 40: 172
[42] Uyama E, Inui S, Hamada K, et al.Magnetic susceptibility and hardness of Au-xPt-yNb alloys for biomedical applications[J]. Acta Biomater., 2013, 9: 8449
[43] Li Q Y, Zhang S.Nutritionist Handbook [M]. Beijing: People's Military Medical Press, 2009: 46(李清亚, 张松. 营养师手册 [M]. 北京: 人民军医出版社, 2009: 46)
[44] Bowen P K, Drelich J, Goldman J.Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents[J]. Adv. Mater., 2013, 25: 2577
[45] Vojtěch D, Kubásek J, ?erák J, et al.Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation[J]. Acta Biomater., 2011, 7: 3515
[46] Ren Y B, Li J, Dong J H, et al.Magnetic compatibility zinc alloy and application thereof [P]. Chin. Pat., 20150542175.X, 2017(任伊宾, 李俊, 东家慧等. 一种磁兼容锌合金及其应用 [P]. 中国专利, 20150542175.X, 2017)
[1] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[2] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[3] 彭吴擎亮, 李强, 常永勤, 王万景, 陈镇, 谢春意, 王纪超, 耿祥, 黄伶明, 周海山, 罗广南. 核聚变堆偏滤器热沉材料研究现状及展望[J]. 金属学报, 2021, 57(7): 831-844.
[4] 姚美意,张兴旺,侯可可,张金龙,胡鹏飞,彭剑超,周邦新. Zr-0.75Sn-0.35Fe-0.15Cr合金在250 ℃去离子水中的初期腐蚀行为[J]. 金属学报, 2020, 56(2): 221-230.
[5] 姚美意, 林雨晨, 侯可可, 梁雪, 胡鹏飞, 张金龙, 周邦新. Sn对锆合金在280 LiOH水溶液中初期腐蚀行为的影响[J]. 金属学报, 2019, 55(12): 1551-1560.
[6] 陈兵,高长源,黄娇,毛亚婧,姚美意,张金龙,周邦新,李强. β-(Nb, Zr)第二相合金在360 ℃去离子水中的腐蚀行为[J]. 金属学报, 2017, 53(4): 447-454.
[7] 韦天国,林建康,龙冲生,陈洪生. 蒸汽中的溶解氧对锆合金腐蚀行为的影响*[J]. 金属学报, 2016, 52(2): 209-216.
[8] 张诚,宋西平,刘敬茹,杨云,尤力. 氘含量对Zr-4合金显微组织和力学性能的影响*[J]. 金属学报, 2016, 52(12): 1572-1578.
[9] 张骏,姚美意,冯炫凯,王志刚,黄娇,戴训,张金龙,周邦新. Zr-Sn-Fe-Cr-(Nb)合金在500 ℃过热蒸汽中的腐蚀各向异性研究*[J]. 金属学报, 2016, 52(12): 1565-1571.
[10] 王桢,周邦新,王波阳,黄娇,姚美意,张金龙. Zr-0.72Sn-0.32Fe-0.15Cr-0.97Nb合金中的第二相及其腐蚀行为*[J]. 金属学报, 2016, 52(1): 78-84.
[11] 王志胜, 陈祥, 李言祥, 张华伟, 刘源. B对铜合金压铸热作模具钢高温力学及热疲劳性能的影响*[J]. 金属学报, 2015, 51(5): 519-526.
[12] 王波阳,周邦新,王桢,黄娇,姚美意,周军. Zr-0.72Sn-0.32Fe-0.14Cr-xNb合金在500 ℃过热蒸汽中的耐腐蚀性能*[J]. 金属学报, 2015, 51(12): 1545-1552.
[13] 章海霞, 李中奎, 周廉, 许并社, 王永祯. 氧化膜结构及内应力对新锆合金腐蚀机理的影响[J]. 金属学报, 2014, 50(12): 1529-1537.
[14] 李烨, 张龙, 朱正旺, 李宏, 王爱民, 张海峰. 热处理对一种高强Zr-Ti合金组织和力学性能的影响*[J]. 金属学报, 2014, 50(1): 19-24.
[15] 朱振东,徐坚. Cu56Hf27Ti17块体金属玻璃的缺口韧性[J]. 金属学报, 2013, 49(8): 969-975.