Please wait a minute...
金属学报  2023, Vol. 59 Issue (2): 289-296    DOI: 10.11900/0412.1961.2021.00214
  研究论文 本期目录 | 过刊浏览 |
Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为
廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇()
中国核动力研究设计院 反应堆燃料及材料重点实验室 成都 610213
Periodic Densification-Transition Behavior of Zr-Sn-Nb-Fe-V Alloys During Uniform Corrosion in Superheated Steam
LIAO Jingjing, ZHANG Wei, ZHANG Junsong, WU Jun, YANG Zhongbo, PENG Qian, QIU Shaoyu()
National Key Laboratory for Nuclear Fuel and Materials, Nuclear Power Institute of China, Chengdu 610213, China
引用本文:

廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
Jingjing LIAO, Wei ZHANG, Junsong ZHANG, Jun WU, Zhongbo YANG, Qian PENG, Shaoyu QIU. Periodic Densification-Transition Behavior of Zr-Sn-Nb-Fe-V Alloys During Uniform Corrosion in Superheated Steam[J]. Acta Metall Sin, 2023, 59(2): 289-296.

全文: PDF(2159 KB)   HTML
摘要: 

研究了2种高Nb、低Nb含量新型Zr-Sn-Nb-Fe-V合金在400℃、10.3 MPa过热蒸汽中的长期均匀腐蚀行为,发现2种合金均表现出周期性钝化-转折规律,对其演变行为及机制进行了深入研究。多次转折发生后,氧化膜显微组织仍呈规律性分层,柱状晶及缺陷带周期性出现。转折前,氧化膜/金属界面起伏强度及四方ZrO2 (t-ZrO2)等效厚度随时间延长而逐渐增大,转折时均快速减小;氧化组织再次钝化-转折时,2者演变规律均与初次转折相同。分析认为,转折时缺陷带的产生受到氧化膜/金属界面的粗糙起伏畸变及t-ZrO2相变共同影响,周期性氧化规律的产生与起伏强度、t-ZrO2等效厚度达到最大临界值的周期性密不可分。Raman光谱分析表明t-ZrO2的280 cm-1特征峰负偏移,定性地反映了t-ZrO2中O空位浓度。O空位浓度在钝化阶段保持稳定,转折时迅速下降,2种合金的耐腐蚀性差异与O空位浓度差异相关。

关键词 锆合金均匀腐蚀周期性转折四方ZrO2O空位    
Abstract

Zirconium alloy is frequently used in the nuclear industry as a reactor fuel cladding material. Uniform corrosion of zirconium alloys has received much attention because it is one of the material's life-limited properties. To study their long-term uniform corrosion behavior, two types of Zr-Sn-Nb-Fe-V alloy claddings, one with a high niobium content and one with a low niobium content, were exposed to 400oC and 10.3 MPa of superheated steam for 800 d. Both alloys clearly exhibit periodic oxide densification-transition. Different quantitative methods were used to study the evolution and mechanism of multiple oxide features. The periodic layers of oxide morphologies are still observed even after two times of transitions. Periodically, columnar grains and the defect layer appear. The undulation intensity (related to the “cauliflower” morphologies) and the equivalent thickness of tetragonal zirconia (t-ZrO2) at the metal/oxide interface increase with corrosion time in pretransition oxides and decrease at transition time. The evolution of both features in the subsequent oxide densification-transition period is the same as initial densificationtransition cycle. The critical value of the interface undulation intensity is approximately 0.25 for both alloys. The critical thickness of t-ZrO2 is approximately 450 nm for low-niobium alloy and approximately 200 nm for high-niobium alloy. Both features periodically reach critical conditions. The evolution of undulation intensity provides an excellent explanation for the production of isolated and interconnected lateral cracks. Additionally, the transformation of t-ZrO2 to monoclinic zirconia (m-ZrO2) results in cracking of the oxide and produces interconnected, tiny equiaxed defects at the interface. Both lateral cracks and equiaxed defects are both important components of the defect layer. It is hypothesized that the synergetic effects of interface undulation and t-ZrO2 transformation affect the transition. The occurrence of periodic transitions is strongly correlated with the periodic behavior of oxide features reaching critical conditions. The volume of oxygen vacancy in t-ZrO2 was presumably evaluated by studying the Raman shift of the characteristic t-ZrO2 peak of 280 cm-1. As a result, the amount does not change considerably during oxide densification but decreases during the transition period. The Raman shift of t-ZrO2 in low-niobium alloys is approximately -1.2 cm-1 less than that in high-niobium alloys, indicating that the low-niobium alloys have a greater volume of oxygen vacancies. It is proposed that the difference in the corrosion behavior of two alloys is derived from the difference in the volume of oxygen vacancies.

Key wordszirconium alloy    uniform corrosion    periodic transition    tetragonal zirconia    oxygen vacancy
收稿日期: 2021-05-19     
ZTFLH:  TG146.4  
基金资助:国家自然科学基金项目(51771098);中核集团重大专项项目([2016]298)
作者简介: 廖京京,男,1994年生,博士
图1  Zr-0.5Sn-0.15Nb-0.5Fe-0.25V (N2)和Zr-0.2Sn-1.3Nb-0.1Fe-0.05V (N3)合金在400℃、10.3 MPa高温蒸汽中的腐蚀增重曲线
Alloytdx
d
Mass gain at transition point
mg·dm-2
Kinetics law in the
pre-transition
Quasi-linear relationship
in the post-transition
N213045.046.76t0.420.44t - 0.26
N38051.757.19t0.460.60t + 16.30
表1  腐蚀动力学关系拟合结果
图2  N2合金腐蚀不同时间后氧化膜截面形貌的SEM像
图3  N3合金腐蚀不同时间后氧化膜截面形貌的SEM像
图4  N3合金腐蚀200 d后氧化膜的TEM像
图5  N2合金腐蚀不同时间后氧化膜内表面SEM像和CLSM三维形貌像
图6  N2和N3合金腐蚀氧化膜/金属界面的起伏强度随时间的演变
图7  N2及N3合金内表面Raman 光谱
图8  t-ZrO2等效厚度随腐蚀状态参数的变化规律及内表面t-ZrO2特征峰位随腐蚀时间演变
1 Motta A T, Couet A, Comstock R J. Corrosion of zirconium alloys used for nuclear fuel cladding[J]. Annu. Rev. Mater. Res., 2015, 45: 311
doi: 10.1146/annurev-matsci-070214-020951
2 Hillner E, Franklin D G, Smee J D. Long-term corrosion of Zircaloy before and after irradiation[J]. J. Nucl. Mater., 2000, 278: 334
doi: 10.1016/S0022-3115(99)00230-5
3 Yang Z B, Zhao W J, Cheng Z Q, et al. Effect of Nb content on the corrosion resistance of Zr-xNb-0.4Sn-0.3Fe alloys[J]. Acta Metall. Sin., 2017, 53: 47
3 杨忠波, 赵文金, 程竹青 等. Nb含量对Zr-xNb-0.4Sn-0.3Fe合金耐腐蚀性能的影响[J]. 金属学报, 2017, 53: 47
4 Yang Z B, Zhao W J, Miao Z, et al. Corrosion behavior of Zr-XSn-1Nb-0.3Fe (X = 0-1.5) alloys[J]. Rare Met. Mater. Eng., 2015, 44: 1129
4 杨忠波, 赵文金, 苗 志 等. Zr-XSn-1Nb-0.3Fe (X = 0~1.5)合金的腐蚀行为研究[J]. 稀有金属材料与工程, 2015, 44: 1129
5 Likhanskii V V, Evdokimov I A. Effect of additives on the susceptibility of zirconium alloys to nodular corrosion[J]. J. Nucl. Mater., 2009, 392: 447
doi: 10.1016/j.jnucmat.2009.04.003
6 Zhang H X, Li Z K, Zhou L, et al. Effects of structure and internal stresses in oxide films on corrosion mechanism of new zirconium alloy[J]. Acta Metall. Sin., 2014, 50: 1529
doi: 10.11900/0412.1961.2014.00261
6 章海霞, 李中奎, 周 廉 等. 氧化膜结构及内应力对新锆合金腐蚀机理的影响[J]. 金属学报, 2014, 50: 1529
doi: 10.11900/0412.1961.2014.00261
7 Polatidis E, Frankel P, Wei J, et al. Residual stresses and tetragonal phase fraction characterisation of corrosion tested Zircaloy-4 using energy dispersive synchrotron X-ray diffraction[J]. J. Nucl. Mater., 2013, 432: 102
doi: 10.1016/j.jnucmat.2012.07.025
8 Preuss M, Frankel P, Lozano-Perez S, et al. Studies regarding corrosion mechanisms in zirconium alloys[J]. J. ASTM Int., 2011, 8: 103246
doi: 10.1520/JAI103246
9 Ni N, Lozano-Perez S, Sykes J M, et al. Focussed ion beam sectioning for the 3D characterisation of cracking in oxide scales formed on commercial ZIRLO™ alloys during corrosion in high temperature pressurised water[J]. Corros. Sci., 2011, 53: 4073
doi: 10.1016/j.corsci.2011.08.013
10 Platt P, Wedge S, Frankel P, et al. A study into the impact of interface roughness development on mechanical degradation of oxides formed on zirconium alloys[J]. J. Nucl. Mater., 2015, 459: 166
doi: 10.1016/j.jnucmat.2015.01.028
11 Liao J J, Yang Z B, Qiu S Y, et al. Corrosion of new zirconium claddings in 500oC/10.3 MPa steam: Effects of alloying and metallography[J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 981
doi: 10.1007/s40195-018-0857-7
12 Liao J J, Yang Z B, Qiu S Y, et al. The correlation between tetragonal phase and the undulated metal/oxide interface in the oxide films of zirconium alloys[J]. J. Nucl. Mater., 2019, 524: 101
doi: 10.1016/j.jnucmat.2019.06.039
13 Qu J W, Tian H, Shi M H, et al. Effect of V addition on the mechanical properties and corrosion resistance of high temperature water vapor of Zr-1Nb-0.1Fe alloy[J]. Nonferrous Met. Eng., 2020, 10(1): 15
13 渠静雯, 田 航, 石明华 等. 添加V对Zr-1Nb-0.1Fe合金力学性能以及高温水蒸汽腐蚀性能的影响[J]. 有色金属工程, 2020, 10(1): 15
14 Liao J J, Qiu S Y, Zhang J S, et al. Research on laterally cracking, vertically cracking and transition mechanism in oxide film of zirconium alloy[J]. Nucl. Power Eng., 2020, 41(): 164
14 廖京京, 邱绍宇, 张君松 等. 锆合金氧化膜中的横纵向开裂及腐蚀转折机理研究[J]. 核动力工程, 2020, 41(): 164
15 Yardley S S, Moore K L, Ni N, et al. An investigation of the oxidation behaviour of zirconium alloys using isotopic tracers and high resolution SIMS[J]. J. Nucl. Mater., 2013, 443: 436
doi: 10.1016/j.jnucmat.2013.07.053
16 Platt P, Frankel P, Gass M, et al. Critical assessment of finite element analysis applied to metal-eoxide interface roughness in oxidising zirconium alloys[J]. J. Nucl. Mater., 2015, 464: 313
doi: 10.1016/j.jnucmat.2015.05.002
17 Zhang J S, Lyu J N, Long C S, et al. Calculation of internal stress in oxide films of zirconium alloy[J]. Nucl. Power Eng., 2021, 42(4): 101
17 张君松, 吕俊男, 龙冲生 等. 锆合金氧化膜的内应力计算[J]. 核动力工程, 2021, 42(4): 101
18 Yao M Y, Zhang X W, Hou K K, et al. The initial corrosion behavior of Zr-0.75Sn-0.35Fe-0.15Cr alloy in deionized water at 250oC[J]. Acta Metall. Sin., 2020, 56: 221
18 姚美意, 张兴旺, 侯可可 等. Zr-0.75Sn-0.35Fe-0.15Cr合金在250℃去离子水中的初期腐蚀行为[J]. 金属学报, 2020, 56: 221
doi: 10.11900/0412.1961.2019.00191
19 Guo X. Property degradation of tetragonal zirconia induced by low-temperature defect reaction with water molecules[J]. Chem. Mater., 2004, 16: 3988
doi: 10.1021/cm040167h
20 Liao J J, Xu F, Peng Q, et al. Research on the existence and stability of interfacial tetragonal zirconia formed on zirconium alloys[J]. J. Nucl. Mater., 2019, 528: 151846
doi: 10.1016/j.jnucmat.2019.151846
21 Qin W, Nam C, Li H L, et al. Tetragonal phase stability in ZrO2 film formed on zirconium alloys and its effects on corrosion resistance[J]. Acta Mater., 2007, 55: 1695
doi: 10.1016/j.actamat.2006.10.030
22 Bouvier P, Godlewski J, Lucazeau G. A Raman study of the nanocrystallite size effect on the pressure-temperature phase diagram of zirconia grown by zirconium-based alloys oxidation[J]. J. Nucl. Mater., 2002, 300: 118
doi: 10.1016/S0022-3115(01)00756-5
23 Liao J J, Zhang J S, Zhang W, et al. Critical behavior of interfacial t-ZrO2 and other oxide features of zirconium alloy reaching critical transition condition[J]. J. Nucl. Mater., 2021, 543: 152474
doi: 10.1016/j.jnucmat.2020.152474
24 Sundell G, Thuvander M, Andrén H O. Barrier oxide chemistry and hydrogen pick-up mechanisms in zirconium alloys[J]. Corros. Sci., 2016, 102: 490
doi: 10.1016/j.corsci.2015.11.002
25 Wang Z, Zhou B X, Wang B Y, et al. Second phase particles and their corrosion behavior of Zr-0.72Sn-0.32Fe-0.15Cr-0.97Nb alloy[J]. Acta Metall. Sin., 2016, 52: 78
doi: 10.11900/0412.1961.2015.00260
25 王 桢, 周邦新, 王波阳 等. Zr-0.72Sn-0.32Fe-0.15Cr-0.97Nb合金中的第二相及其腐蚀行为[J]. 金属学报, 2016, 52: 78
[1] 姚美意,张兴旺,侯可可,张金龙,胡鹏飞,彭剑超,周邦新. Zr-0.75Sn-0.35Fe-0.15Cr合金在250 ℃去离子水中的初期腐蚀行为[J]. 金属学报, 2020, 56(2): 221-230.
[2] 姚美意, 林雨晨, 侯可可, 梁雪, 胡鹏飞, 张金龙, 周邦新. Sn对锆合金在280 LiOH水溶液中初期腐蚀行为的影响[J]. 金属学报, 2019, 55(12): 1551-1560.
[3] 陈兵,高长源,黄娇,毛亚婧,姚美意,张金龙,周邦新,李强. β-(Nb, Zr)第二相合金在360 ℃去离子水中的腐蚀行为[J]. 金属学报, 2017, 53(4): 447-454.
[4] 任伊宾, 李俊, 王青川, 杨柯. MRI磁兼容合金研究[J]. 金属学报, 2017, 53(10): 1323-1330.
[5] 韦天国,林建康,龙冲生,陈洪生. 蒸汽中的溶解氧对锆合金腐蚀行为的影响*[J]. 金属学报, 2016, 52(2): 209-216.
[6] 张诚,宋西平,刘敬茹,杨云,尤力. 氘含量对Zr-4合金显微组织和力学性能的影响*[J]. 金属学报, 2016, 52(12): 1572-1578.
[7] 张骏,姚美意,冯炫凯,王志刚,黄娇,戴训,张金龙,周邦新. Zr-Sn-Fe-Cr-(Nb)合金在500 ℃过热蒸汽中的腐蚀各向异性研究*[J]. 金属学报, 2016, 52(12): 1565-1571.
[8] 王桢,周邦新,王波阳,黄娇,姚美意,张金龙. Zr-0.72Sn-0.32Fe-0.15Cr-0.97Nb合金中的第二相及其腐蚀行为*[J]. 金属学报, 2016, 52(1): 78-84.
[9] 王波阳,周邦新,王桢,黄娇,姚美意,周军. Zr-0.72Sn-0.32Fe-0.14Cr-xNb合金在500 ℃过热蒸汽中的耐腐蚀性能*[J]. 金属学报, 2015, 51(12): 1545-1552.
[10] 章海霞, 李中奎, 周廉, 许并社, 王永祯. 氧化膜结构及内应力对新锆合金腐蚀机理的影响[J]. 金属学报, 2014, 50(12): 1529-1537.
[11] 李烨, 张龙, 朱正旺, 李宏, 王爱民, 张海峰. 热处理对一种高强Zr-Ti合金组织和力学性能的影响*[J]. 金属学报, 2014, 50(1): 19-24.
[12] 韦天国,龙冲生,苗志,刘云明,栾佰峰. Zr-0.4Fe-1.0Cr-x Mo合金在500℃和10.3 MPa水蒸汽中的腐蚀行为[J]. 金属学报, 2013, 49(6): 717-724.
[13] 张金龙,谢兴飞,姚美意,周邦新,彭剑超,梁雪. Zr-1Nb-0.7Sn-0.03Fe-xGe合金在360 ℃ LiOH水溶液中耐腐蚀性能的研究[J]. 金属学报, 2013, 29(4): 443-450.
[14] 姚美意 邹玲红 谢兴飞 张金龙 彭剑超 周邦新. 添加Bi对Zr-4合金在400 ℃/10.3 MPa过热蒸汽中耐腐蚀性能的影响[J]. 金属学报, 2012, 48(9): 1097-1102.
[15] 孙国成 周邦新 姚美意 谢世敬 李强. 锆合金在LiOH水溶液中腐蚀的各向异性研究[J]. 金属学报, 2012, 48(9): 1103-1108.