Please wait a minute...
金属学报  2018, Vol. 54 Issue (12): 1833-1842    DOI: 10.11900/0412.1961.2018.00153
  本期目录 | 过刊浏览 |
SLM球形Ni粉的制备与打印工艺性能
张亚娟, 王海滨, 宋晓艳, 聂祚仁()
北京工业大学材料科学与工程学院新型功能材料教育部重点实验室 北京 100124
Preparation and Performance of Spherical Ni Powder for SLM Processing
Yajuan ZHANG, Haibin WANG, Xiaoyan SONG, Zuoren NIE()
Key Laboratory of Advanced Functional Materials, Education Ministry of China, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
引用本文:

张亚娟, 王海滨, 宋晓艳, 聂祚仁. SLM球形Ni粉的制备与打印工艺性能[J]. 金属学报, 2018, 54(12): 1833-1842.
Yajuan ZHANG, Haibin WANG, Xiaoyan SONG, Zuoren NIE. Preparation and Performance of Spherical Ni Powder for SLM Processing[J]. Acta Metall Sin, 2018, 54(12): 1833-1842.

全文: PDF(7956 KB)   HTML
摘要: 

针对选区激光熔化(SLM)的技术特点,采用低温喷雾干燥与热处理相结合的新方法,制备得到了物相纯净、球形度高、流动性好且粒径分布窄的球形Ni粉。比较分析了喷雾干燥法制备的Ni粉和气雾化法生产的商业化Ni粉的显微组织和激光吸收率及其对3D打印件组织和性能的影响。结果发现,喷雾干燥法制备Ni粉的激光吸收率是气雾化法生产Ni粉的2倍以上;打印过程中形成更宽的熔道,且颗粒熔化后表面张力和颗粒间液桥力均较小,大大减少了金属粉末打印中极易出现的表面球化现象。喷雾干燥法制备Ni粉打印件的相对密度达到99.2%,其显微组织由细小的柱状晶和胞状晶构成,且柱状晶穿过层间边界生长,使打印件具有致密的层间结合。

关键词 选区激光熔化喷雾干燥球形度表面粗糙度激光吸收系数    
Abstract

3D printing has attracted increasing interests in the field of metallic materials as it can effectively shorten the production cycle and create parts with complex shapes, which can hardly be produced by traditional methods. However, the gas atomization, as the mainstream method of preparing metal and alloy powders to meet the requirements of the processing of selective laser melting (SLM) at present, still has some limitations, such as hollow and/or satellite balls in the powder. This influences directly the density and performance of the printing parts. Moreover, the laser absorption in the smooth surface of powder particle is generally less than 10% in the laser processing, which hinders rapid heating of the powder. It has been found that the material can obtain multiple absorption of laser energy by increasing the surface roughness of powder particles, which can effectively improve the laser absorption rate and is beneficial to get the dense printing parts. Based on this, a novel method combining low temperature spray-drying with heat treatment was developed to prepare Ni powder with high purity, good sphericity, high flowability and narrow particle size distribution. The microstructure and laser absorptivity of the prepared Ni powder were compared with those of the commercial Ni powder prepared by gas atomization, and their influences on the microstructure and properties of the 3D printed bulk materials were investigated. It is found that the laser absorptivity of the Ni powder prepared by spray-drying is more than 2 times as high as that of the commercial Ni powder. This leads to a wider melting channel, smaller surface tension and liquid-bridging force between particles in the printing process. As a result, the spheroidization phenomenon occurred on the surface of the printed bulk material can be avoided by the use of the spray-dried powder, and the relative density is achieved as 99.2% at the as-printed state. In the microstructure of the printed bulk material, in addition to the cellular crystals, there are a number of fine columnar crystals, grown across the interlaminar boundaries, which is favorable for a high bonding strength between the interlayers.

Key wordsselective laser melting    spray drying    sphericity    surface roughness    laser absorptivity
收稿日期: 2018-04-19     
ZTFLH:  TF123  
基金资助:国家自然科学基金创新研究群体项目No.51621003
作者简介:

作者简介 张亚娟,女,1988年生,博士

图1  2种打印用Ni粉的形貌、粒径分布和球形度
图2  喷雾干燥法和气雾化法制备的2种Ni粉单个颗粒形貌及颗粒截面形貌
Powder Ni Fe Co O N H Others
Spray-dried 99.68 0.05 0.19 0.03 0.001 0.003 0.046
Gas atomized 99.74 0.03 0.01 0.15 0.003 0.005 0.062
表1  喷雾干燥法与气雾化法制备Ni粉的成分分析
图3  3D打印用Ni粉的物相分析
图4  喷雾干燥法制备Ni粉与气雾化法制备Ni粉所得打印件的物相分析
图5  喷雾干燥法及气雾化法制备的Ni粉打印件横向表面形貌与抛光后形貌
图6  2种粉末颗粒的表面轮廓线
图7  喷雾干燥法和气雾化法制备的Ni粉打印件的纵向面形貌和抛光后的显微组织
图8  2种打印件的显微硬度及与传统铸态金属的比较
图9  2种Ni粉打印件的纳米压痕硬度
图10  2种打印件的位移-载荷曲线
[1] Zhao X M, Chen J, Lin X, et al.Study on microstructure and mechanical properties of laser rapid forming Inconel 718[J]. Mater. Sci. Eng., 2008, A478: 119
[2] Paul C P, Ganesh P, Mishra S K, et al.Investigating laser rapid manufacturing for Inconel-625 components[J]. Opt. Laser Technol., 2007, 39: 800
[3] Lin X, Yue T M, Yang H O, et al.Microstructure and phase evolution in laser rapid forming of a functionally graded Ti-Rene88DT alloy[J]. Acta Mater., 2006, 54: 1901
[4] Gu D D, Meiners W, Wissenbach K, et al.Laser additive manufacturing of metallic components: Materials, processes and mechanisms[J]. Int. Mater. Rev., 2012, 57: 133
[5] Zhang B C, Liao H L, Coddet C.Microstructure evolution and density behavior of CP Ti parts elaborated by self-developed vacuum selective laser melting system[J]. Appl. Surf. Sci., 2013, 279: 310
[6] Suwanprateeb J, Sanngam R, Panyathanmaporn T.Influence of raw powder preparation routes on properties of hydroxyapatite fabricated by 3D printing technique[J]. Mater. Sci. Eng., 2010, C30: 610
[7] Averyanova M, Bertrand P, Verquin B.Studying the influence of initial powder characteristics on the properties of final parts manufactured by the selective laser melting technology[J]. Virtual Phys. Prototyp., 2011, 6: 215
[8] Powders M, Flowmeter H, Spectrometry F.Standard guide for characterizing properties of metal powders used for additive manufacturing processes[S]. ASTM International: F3049-14. ASTM International, 2014: 1
[9] Yang D Y, Peng H X, Fu Y Q, et al.Nucleation on thermal history and microstructural evolution of atomized Ti-48Al nano and micro-powders[J]. Nanosci. Nanotech. Lett., 2015, 7: 603
[10] Liu F C, Lin X, Yang G L, et al.Microstructure and residual stress of laser rapid formed Inconel 718 nickel-base superalloy[J]. Opt. Laser Technol., 2011, 43: 208
[11] Kempen K, Yasa E, Thijs L, et al.Microstructure and mechanical properties of selective laser melted 18Ni-300 steel[J]. Physics Procedia, 2011, 12: 255
[12] Zhao X M, Lin X, Chen J, et al.The effect of hot isostatic pressing on crack healing, microstructure, mechanical properties of Rene88DT superalloy prepared by laser solid forming[J]. Mater. Sci. Eng., 2009, A504: 129
[13] Zhang J F.Study on direct selective laser sintering of Ni-based metallic powder and key technologies [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2002(张剑峰. Ni基金属粉末激光直接烧结成形及关键技术研究 [D]. 南京: 南京航空航天大学, 2002)
[14] Shen X F.Numerical simulation and sintering zone prediction of direct laser sintering of multi-component metal powders [D]. Chengdu: Sichuan University, 2005(沈显峰. 多组元金属粉末直接激光烧结过程数值模拟及烧结区域预测 [D]. 成都: 四川大学, 2005)
[15] Agarwala M, Bourell D, Beaman J, et al.Direct selective laser sintering of metals[J]. Int. J. Powder Metall., 1992, 1: 26
[16] Bergstr?m D, Powell J, Kaplan A F H. A ray-tracing analysis of the absorption of light by smooth and rough metal surfaces[J]. J. Appl. Phys., 2007, 101: 113504
[17] Bergstr?m D, Kaplan A.Mathematical modelling of laser absorption mechanisms in metals: A review [A]. Proceedings of the 16th Meeting on Mathematical Modelling of Materials Processing with Lasers[C]. Igls, Austria: Lulea TU, 2003: 20
[18] Sun D, Tong Y G, He X N.Study on influence factors of laser absorptivity in laser welding[J]. Hot Work. Technol., 2010, 39(19): 165(孙岱, 童彦刚, 贺晓娜. 激光焊接中激光吸收率影响因素的研究[J]. 热加工工艺, 2010, 39(19): 165)
[19] Yang S M, Tao W S.Heat Transfer [M]. 3rd Ed., Beijing: Higher Education Press, 1998: 1(杨世铭, 陶文栓. 传热学[M]. 第3版. 北京: 高等教育出版社, 1998: 1)
[20] Nersisyan H H, Yoo B U, Kim Y M, et al.Gas-phase supported rapid manufacturing of Ti-6Al-4V alloy spherical particles for 3D printing[J]. Chem. Eng. J., 2016, 304: 232
[21] Chen J, Zhang Q L, Yao J H, et al.Influence of surface roughness on laser absorptivity[J]. Laser Technol., 2008, 32: 624(陈君, 张群莉, 姚建华等. 材料表面粗糙度对激光吸收率影响的研究[J]. 激光技术, 2008, 32: 624)
[22] Zu D L.Electrodynamics [M]. Beijing: Tsinghua University Press, 2006: 1(俎栋林. 电动力学[M]. 北京: 清华大学出版社, 2006: 1)
[23] Wang L Z, Wu J J, Zhang D J.Properties evolution of additive manufacture used tungsten powders prepared by radio frequency induction plasma[J]. Int. J. Refract. Met. Hard Mater., 2017, 67: 90
[24] Wang C.Study on the temperature dependent surface energy and elastic modulus of FCC metal [D]. Beijing: China University of Geosciences (Beijing), 2016(王程. 面心立方金属温度相关表面能和表面弹性模量研究 [D]. 北京: 中国地质大学(北京), 2016)
[25] Huang G X.The analysis of laser-induced temperature field in metal [D]. Changchun: Changchun University of Science and Technology, 2008(黄国秀. 激光与金属相互作用的温度场分析 [D]. 长春: 长春理工大学, 2008)
[26] Gu C L.Research on heat conduction and friction of HVC powder based on fractal theory [D]. Changsha: Central South University, 2008(谷成玲. 基于分形理论的HVC粉末热传导及摩擦力的研究 [D]. 长沙: 中南大学, 2008)
[27] Liu D Y, Chen X P, Lu L Y, et al.Prediction of solids dispersion coefficient in fluidized bed dense zone using CFD simulation[J]. J. Chem. Ind. Eng. Soc. China, 2009, 60: 2183(刘道银, 陈晓平, 陆利烨等. 流化床密相区颗粒扩散系数的CFD数值预测[J]. 化工学报, 2009, 60: 2183)
[28] Rabinovich Y I, Esayanur M S, Moudgil B M.Capillary forces between two spheres with a fixed volume liquid bridge: Theory and experiment[J]. Langmuir, 2005, 21: 10992
[29] Dao M, Chollacoop N, Van Vliet K J, et al. Computational modeling of the forward and reverse problem in instrumented sharp indentation[J]. Acta Mater., 2001, 49: 3899
[1] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[2] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[3] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[4] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[5] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[6] 王孟, 杨永强, Trofimov Vyacheslav, 宋长辉, 周瀚翔, 王迪. 粉末粒径对AlSi10Mg合金选区激光熔化成形的影响[J]. 金属学报, 2023, 59(1): 147-156.
[7] 祝国梁, 孔德成, 周文哲, 贺戬, 董安平, 疏达, 孙宝德. 选区激光熔化 γ' 相强化镍基高温合金裂纹形成机理与抗裂纹设计研究进展[J]. 金属学报, 2023, 59(1): 16-30.
[8] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[9] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[10] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[11] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.
[12] 刘广, 陈鹏, 姚锡禹, 陈朴, 刘星辰, 刘朝阳, 严明. CrMoTi中熵合金的性能及其原位合金化增材制造[J]. 金属学报, 2022, 58(8): 1055-1064.
[13] 耿遥祥, 唐浩, 许俊华, 张志杰, 喻利花, 鞠洪博, 江乐, 简江林. 选区激光熔化高强Al-(Mn, Mg)-(Sc, Zr)合金成形性及力学性能[J]. 金属学报, 2022, 58(8): 1044-1054.
[14] 林研, 司丞, 徐京豫, 刘泽, 张诚, 柳林. 选区激光熔化高强韧铝合金的异质结构调控及力学性能[J]. 金属学报, 2022, 58(11): 1509-1518.
[15] 王凯冬, 刘允中, 詹强坤, 黄斌. 形核剂的添加方式对选区激光熔化成形含锆Al-Cu-Mg合金显微组织与力学性能的影响[J]. 金属学报, 2022, 58(10): 1281-1291.