Please wait a minute...
金属学报  2016, Vol. 52 Issue (1): 10-16    DOI: 10.11900/0412.1961.2015.00189
  本期目录 | 过刊浏览 |
射频反应溅射制备MgO二次电子发射薄膜*
王彬1,2,熊良银1,2,刘实1,2()
1 中国科学院金属研究所, 沈阳 110016
2 中国科学院金属研究所核用材料与安全评价重点实验室, 沈阳 110016
MgO SECONDARY ELECTRON EMISSION FILM PREPARED BY RADIO-FREQUENCY REACTIVE SPUTERRING
Bin WANG1,2,Liangyin XIONG1,2,Shi LIU1,2()
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

王彬,熊良银,刘实. 射频反应溅射制备MgO二次电子发射薄膜*[J]. 金属学报, 2016, 52(1): 10-16.
Bin WANG, Liangyin XIONG, Shi LIU. MgO SECONDARY ELECTRON EMISSION FILM PREPARED BY RADIO-FREQUENCY REACTIVE SPUTERRING[J]. Acta Metall Sin, 2016, 52(1): 10-16.

全文: PDF(3587 KB)   HTML
摘要: 

采用氧化激活AgMg合金在表面形成MgO薄膜, 以及采用射频反应溅射沉积法在不锈钢基片上分别制备了MgO薄膜和掺杂CoO的MgO薄膜, 研究了制备工艺对薄膜二次电子发射系数及耐电子束轰击能力的影响. 结果表明, 薄膜厚度对其耐电子束轰击能力有显著影响, 随着薄膜厚度的增加, 耐电子束轰击能力明显增强, 而射频反应溅射沉积可通过调整镀膜时间获得不同厚度的MgO薄膜. 射频反应溅射的氧分压比对MgO薄膜表面质量有较大影响, 随着沉积过程中氧分压比增大, MgO薄膜表面粗糙度增大, 不利于二次电子发射. CoO掺杂改善了MgO薄膜表面质量, 使其表面更加平整、光滑, 提高了薄膜的二次电子发射系数, 而且降低了薄膜表面质量对氧分压比变化的敏感性. 550 ℃真空热处理1 h使CoO掺杂的MgO薄膜发生热分解失氧且表面质量变差, 导致二次电子发射系数大幅下降. 在沉积过程中, 提升基片温度或提高氧分压, 会使薄膜中存在金属态Mg且薄膜表面质量变差, 使二次电子发射系数小幅下降.

关键词 射频反应溅射沉积薄膜厚度表面粗糙度二次电子发射系数耐电子束轰击能力    
Abstract

High, stable and durable secondary electron emission is an essential property for the application of dynodes of electron multipliers and photomultiplier tubes. The MgO film have been widely used as dynode materials for the applications owing to its good secondary electron emission properties. In this work, MgO and CoO doped MgO films, as secondary electron emission films, were prepared by radio-frequency reactive sputtering deposition on the stainless steel substrate, and also another MgO film at the surface of activated AgMg alloy was prepared. The effect of preparation processes on the secondary electron emission properties of the films was focused. It was found that the film thickness significantly affected the resistance to electron beam bombardment. With the increase of film thickness, the resistance to electron beam bombardment was significantly enhanced. Radio-frequency reactive sputtering deposition could control the film thickness by varying deposition time. The surface quality of MgO film is quite sensitive to the oxygen partial pressure of the deposition atmosphere. Higher oxygen partial pressure caused higher surface roughness, which was harmful to the secondary electron emission. After doping with CoO, the surface of MgO films were much flatter and smoother, resulting in the improvement of the secondary electron emission coefficient. The CoO doping also reduced of the sensitivity of film surface quality to the oxygen partial pressure. The secondary electron emission coefficient of CoO doped MgO film sharply decreased after heated at 550 ℃ for 1 h due to the surface quality degrading and the thermal decomposition induced loss of oxygen. Elevating the substrate temperature or oxygen partial pressure during deposition accounted for the presence of metallic Mg in film and the degrading of surface quality, which finally lead to lower secondary electron emission coefficient.

Key wordsradio-frequency reactive sputtering    thickness of film    surface roughness    secondary electron emission coefficient    resistance to electron beam bombardment
收稿日期: 2015-04-02     
图1  试样No.1和No.2的二次电子发射系数(d)随电子束轰击时间(t)的变化
图2  试样No.1和No.2中元素沿深度的变化
图3  射频反应溅射不同氧分压比下制备的MgO薄膜的SEM像
图4  试样No.3中元素沿深度变化及Co2p的结合能随深度的变化
图5  试样No.2和No.3的表面AFM像和高度变化
图6  不同射频溅射制备工艺下及热处理后CoO掺杂MgO薄膜的SEM像
图7  不同射频溅射制备工艺下及热处理后CoO掺杂MgO薄膜中元素沿深度的变化
[1] Sommer A H. J Appl Phys, 1958; 29: 598
[2] Zworykin V K, Ruedy J E, Pike E W. J Appl Phys, 1941; 12: 696
[3] Wargo P, Haxby B V, Shepherd W G. J Appl Phys, 1956; 27: 1311
[4] Rappaport P. J Appl Phys, 1954; 25: 288
[5] Kodu M, Aints M, Avarmaa T, Denks V, Feldbach E, Jaaniso R, Kirm M, Maaroos A, Raud J. Appl Surf Sci, 2011; 257: 5328
[6] Kim R, Kim Y H, Park J W. J Mater Sci, 2001; 36: 1469
[7] Ho I C, Xu Y H, Mackenzie J D. J Sol-Gel Sci Technol, 1997; 9: 295
[8] Li C, Luo C T, Wang D S. Vac Cryogenics, 2009; 15(4): 187
[8] (李 晨, 罗崇泰, 王多书. 真空与低温, 2009; 15(4): 187 )
[9] Yu Z N, Zheng D X, Sun J. Vac Electronics, 2000; 1: 56
[9] (喻志农, 郑德修, 孙 鉴. 真空电子技术, 2000; 1: 56)
[10] Park C H, Kim Y K, Lee S H, Lee W G, Sung Y M. Thin Solid Films, 2000; 366: 88
[11] Wang Y, Xu K W. Acta Metall Sin, 2003; 39: 1051
[11] (汪 渊, 徐可为. 金属学报, 2003; 39: 1051)
[12] Lee J S, Ryu B G, Kwon H J, Jeong Y W, Kim H H. Thin Solid Films, 1999; 354: 82
[13] Sugawara A, Mae K. Surf Sci, 2004; 558: 211
[14] Chen T L, Li X M, Yu W D, Zhang X. Appl Phys, 2005; 81A: 657
[15] Takeo N, Takashi F, Shiger B. Vacuum, 2004; 74: 595
[16] Nam K H, Jung M J, Han J G, Kopte T, Hartung U, Peters C. Vacuum, 2004; 75: 1
[17] Lee J H, Jeong T, Yu S G, Jin S, Heo J, Yi W, Jeonb D, Kim J M. Appl Surf Sci, 2001; 174: 62
[18] Khairi I G, Bastawros A M. J Appl Phys, 1982; 53: 5239
[19] Bruining H. Physics and Applications of Secondary Emission. New York, McGraw-Hill: The Pitman Press of Great Britain, 1954: 40
[20] John C C F, Victor E H. J Appl Phys, 1974; 45: 3742
[21] Victor E H, John C C F. Appl Phys Lett, 1973; 7: 23
[22] Prada S F, Livia G, Pacchioni G. J Phys Chem, 2012; 116C: 5781
[23] Cho J H, Park J W. J Vac Sci Technol, 2000; 18A: 329
[24] Gamil A E S, Nagi R E R, Turky G. Solid State Ionics, 2003; 156: 337
[25] Wang B, Xiong L Y, Li M Q, Ge P, Liu S. Chin Pat, CN201320468739.6, 2013
[25] (王 彬, 熊良银, 李明群, 葛 鹏, 刘 实. 中国专利, CN201320468739.6, 2013)
[26] Wang B, Xiong L Y, Liu S. Chin Pat, CN201320441097.0, 2013
[26] (王 彬, 熊良银, 刘 实. 中国专利, CN201320441097.0, 2013)
[27] Dresner J, Goldstein B. J Appl Phys, 1976; 47: 1038
[1] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.
[2] 郭军力, 文光华, 符姣姣, 唐萍, 侯自兵, 谷少鹏. 冷却速率对包晶钢凝固过程中包晶转变收缩的影响[J]. 金属学报, 2019, 55(10): 1311-1318.
[3] 张亚娟, 王海滨, 宋晓艳, 聂祚仁. SLM球形Ni粉的制备与打印工艺性能[J]. 金属学报, 2018, 54(12): 1833-1842.
[4] 朱莉娜,邓彩艳,王东坡,胡绳荪. 表面粗糙度对Ti-6Al-4V合金超高周疲劳性能的影响*[J]. 金属学报, 2016, 52(5): 583-591.
[5] 杨振国; 张继明; 李守新; 李广义; 王清远; 惠卫军; 翁宇庆 . 高周疲劳条件下高强钢临界夹杂物尺寸估算[J]. 金属学报, 2005, 41(11): 1136-1142 .
[6] 唐武; 徐可为; 王平; 李弦 . Au/NiCr/Ta多层金属膜的表面粗糙度和纳米压入硬度的研究[J]. 金属学报, 2002, 38(5): 449-452 .
[7] 李小武;田继丰;康雁;王中光. 断口表面粗糙度的定量分析[J]. 金属学报, 1995, 31(19): 311-317.