Please wait a minute...
金属学报  2022, Vol. 58 Issue (6): 807-815    DOI: 10.11900/0412.1961.2021.00195
  研究论文 本期目录 | 过刊浏览 |
Zr61Cu25Al12Ti2Zr52.5Cu17.9Ni14.6Al10Ti5 块体非晶合金过冷液相区的塑性流变行为
刘帅帅, 侯超楠, 王恩刚, 贾鹏()
东北大学 冶金学院 材料电磁过程研究教育部重点实验室 沈阳 110819
Plastic Rheological Behaviors of Zr61Cu25Al12Ti2 and Zr52.5Cu17.9Ni14.6Al10Ti5 Amorphous Alloys in the Supercooled Liquid Region
LIU Shuaishuai, HOU Chaonan, WANG Engang, JIA Peng()
Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), School of Metallurgy, Northeastern University, Shenyang 110819, China
引用本文:

刘帅帅, 侯超楠, 王恩刚, 贾鹏. Zr61Cu25Al12Ti2Zr52.5Cu17.9Ni14.6Al10Ti5 块体非晶合金过冷液相区的塑性流变行为[J]. 金属学报, 2022, 58(6): 807-815.
Shuaishuai LIU, Chaonan HOU, Engang WANG, Peng JIA. Plastic Rheological Behaviors of Zr61Cu25Al12Ti2 and Zr52.5Cu17.9Ni14.6Al10Ti5 Amorphous Alloys in the Supercooled Liquid Region[J]. Acta Metall Sin, 2022, 58(6): 807-815.

全文: PDF(1861 KB)   HTML
摘要: 

利用Gleeble 3500热模拟试验机研究了块体非晶合金Zr61Cu25Al12Ti2 (ZT1)和Zr52.5Cu17.9Ni14.6Al10Ti5 (Vit105)过冷液相区的压缩变形性能及其流变行为。结果表明,温度和应变速率影响其在过冷液相区的变形模式,主要包括3种典型方式:低温或高应变速率时局部剪切导致的脆性断裂,较高温度或者低应变速率时的Newtonian流变,中温区间或者较高应变速率时的非Newtonian流变。给出了2种合金Newtonian流变向非Newtonian流变转变的边界条件及过冷液相区的变形图。当压缩应变速率小于1 × 10-3 s-1时,ZT1和Vit105分别在678~703 K和703~738 K温度区间表现出Newtonian流变行为,适合进行热塑性加工。利用自由体积模型分析发现,与ZT1相比,Vit105合金的流变激活体积(Va = 0.123~0.234 nm3)明显小于ZT1 (Va = 0.137~0.590 nm3)。综合合金玻璃转变温度和脆度系数,指出在过冷液相区Vit105比ZT1具有更高的稳定性和更好的可加工性。

关键词 非晶合金过冷液相区Newtonian流变脆度系数    
Abstract

The plastic deformation of amorphous alloys at room temperature is limited to small shear band zones and minimal strain. However, amorphous alloys in the supercooled liquid region exhibit superplasticity and have high forming ability. Zr61Cu25Al12Ti2 (ZT1) and Zr52.5Cu17.9Ni14.6Al10Ti5 (Vit105) amorphous alloys have excellent forming ability and similar mechanical properties at room temperature or low temperature. They have broad application prospects as flexible components, but little work has been conducted on the superplasticity of ZT1. This work examined the rheological behavior of the supercooled liquid of two amorphous alloys to provide a theoretical basis for microplastic deformation. ZT1 and Vit105 amorphous alloys were prepared by copper mold suction casting. The high-temperature rheological behaviors of the two amorphous alloys were investigated using Gleeble3500. Variations in temperature and strain rate influence the steady-state stress obviously in the supercooled liquid region. Theological transformation behaviors of the different Zr-based amorphous alloys were analyzed based on the viscous flow model. The plastic deformation in the supercooled liquid region included brittle fracture caused by local shear in low-temperature range or at a high strain rate, non-Newtonian rheology at high strain rates in the middle-temperature range, and Newtonian rheology at low strain rates in the high-temperature range. In the plastic deformation process at a low strain rate, nanocrystals are formed inside the amorphous alloy due to the combined actions of thermal and stress driving forces. With a compressive rate less than 1 × 10-3 s-1, ZT1 and Vit105 exhibited Newtonian flow over the temperature ranges of 678-703 K and 703-738 K, respectively. According to the free volume model, the calculated activation volumes for ZT1 and Vit105 were 0.137-0.590 nm3 and 0.123-0.234 nm3, respectively. The much smaller activation volume in Newtonian flow was associated with the higher diffusibility and atomistic mobility of the free volume in the material. The Vit105 amorphous alloy showed higher stability and glass formability, which is more convenient for thermoplastic processing, due to the combination of a high glass transition temperature and fragility parameter.

Key wordsamorphous alloy    supercooled liquid region    Newtonian rheology    fragility parameter
收稿日期: 2021-05-07     
ZTFLH:  TG139.8  
基金资助:国家自然科学基金项目(51674082)
作者简介: 刘帅帅,男,1995年生,硕士生
图1  Zr61Cu25Al12Ti2 (ZT1)和Zr52.5Cu17.9Ni14.6Al10Ti5 (Vit-105)非晶合金的XRD谱和DSC曲线
图2  应变速率为1 × 10-3 s-1、不同温度下ZT1和Vit105非晶合金的真应力-真应变曲线
图3  应变速率为1 × 10-3 s-1时,ZT1合金在688和693 K以及Vit105合金在723 K热塑性变形后的XRD谱
图4  不同应变速率时,663 K下ZT1和683 K下Vit105非晶合金的真应力-真应变曲线
图5  ZT1和Vit105非晶合金温度、应变速率与稳态流变应力的关系
图6  ZT1和Vit105非晶合金应变速率与流变应力之间的关系
图7  ZT1和Vit105非晶合金的黏度变化曲线
图8  ZT1和Vit105非晶合金的Newtonian流变向非Newtonian流变转变界限
图9  ZT1和Vit105非晶合金过冷液相区的变形图
图10  非晶合金过冷液相区Newtonian黏度和温度的变化关系
图11  ZT1和Vit105非晶合金Newtonian黏度与约化温度 Tg* / T的变化关系(Angell图)
1 Inoue A. High strength bulk amorphous alloys with low critical cooling rates (overview) [J]. Mater. Trans. JIM, 1995, 36: 866
2 Jin C R, Yang S Y, Deng X Y, et al. Effect of nano-crystallization on dynamic compressive property of Zr-based amorphous alloy [J]. Acta Metall. Sin., 2019, 55: 1561
2 金辰日, 杨素媛, 邓学元 等. 纳米晶化对锆基非晶合金动态压缩性能的影响 [J]. 金属学报, 2019, 55: 1561
doi: 10.11900/0412.1961.2019.00207
3 Wang W H. The nature and properties of amorphous matter [J]. Prog. Phys., 2013, 33: 177
3 汪卫华. 非晶态物质的本质和特性 [J]. 物理学进展, 2013, 33: 177
4 Telford M. The case for bulk metallic glass [J]. Mater. Today, 2004, 7: 36
5 Khan M M, Nemati A, Ur Rahman Z, et al. Recent advancements in bulk metallic glasses and their applications: A review [J]. Crit. Rev. Solid State Mater. Sci., 2018, 43: 233
doi: 10.1080/10408436.2017.1358149
6 Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses [J]. Acta Metall., 1976, 25: 407
doi: 10.1016/0001-6160(77)90232-2
7 Argon A. Plastic deformation in metallic glasses [J]. Acta Metall., 1979, 27: 47
doi: 10.1016/0001-6160(79)90055-5
8 Heggen M, Spaepen F, Feuerbacher M. Creation and annihilation of free volume during homogeneous flow of a metallic glass [J]. J. Appl. Phys., 2005, 97: 033506
9 Zhang Z F, Qu R T, Liu Z Q. Advances in fracture behavior and strength theory of metallic glasses [J]. Acta Metall. Sin., 2016, 52: 1171
9 张哲峰, 屈瑞涛, 刘增乾. 金属玻璃的断裂行为与强度理论研究进展 [J]. 金属学报, 2016, 52: 1171
10 Shen J, Wang G, Sun J F, et al. Superplastic flow behavior of Zr base bulk metallic glass in supercooled liquid region [J]. Acta Metall. Sin., 2004, 40: 518
10 沈 军, 王 刚, 孙剑飞 等. Zr基块体非晶合金在过冷液相区的超塑性流变行为 [J]. 金属学报, 2004, 40: 518
11 Lee K S, Bang W K, Ha T K, et al. Study on the high-temperature deformation behavior and formability of Zr-based bulk metallic glass [J]. J. Metastable Nanocryst. Mater., 2003, 15-16: 155
12 Zhang Z H, Zhou C, Xie J X. Superplastic extrusion behaviors of Zr55Al10Ni5Cu30 bulk metallic glass [J]. Chin. J. Nonferrous Met., 2005, 15: 33
12 张志豪, 周 成, 谢建新. Zr55Al10Ni5Cu30大块非晶合金的超塑性挤压成形性能 [J]. 中国有色金属学报, 2005, 15: 33
13 Xu W L, Li W B, Chen S B, et al. Superplastic diffusion bonding of metallic glasses by rapid heating [J]. Intermetallics, 2018, 98: 143
doi: 10.1016/j.intermet.2018.05.001
14 Chen W, Liu Z, Schroers J. Joining of bulk metallic glasses in air [J]. Acta Mater., 2014, 62: 49
doi: 10.1016/j.actamat.2013.08.053
15 Nishiyama N, Amiya K, Inoue A. Bulk metallic glasses for industrial products [J]. Mater. Trans., 2004, 45: 1245
doi: 10.2320/matertrans.45.1245
16 Liu Z, Schroers J. General nanomoulding with bulk metallic glasses [J]. Nanotechnology, 2015, 26: 145301
doi: 10.1088/0957-4484/26/14/145301
17 Cohen M H, Turnbull D. Molecular transport in liquids and glasses [J]. J. Chem. Phys., 1959, 31: 1164
doi: 10.1063/1.1730566
18 Inoue A, Zhang T, Nishiyama N, et al. Preparation of 16 mm diameter rod of amorphous Zr65Al7.5Ni10Cu17.5 alloy [J]. Mater. Trans. JIM, 1993, 34: 1234
19 He Q, Xu J. Locating malleable bulk metallic glasses in Zr-Ti-Cu-Al alloys with calorimetric glass transition temperature as an indicator [J]. J. Mater. Sci. Technol., 2012, 28: 1109
doi: 10.1016/S1005-0302(12)60180-7
20 Li D F, Shen Y, Xu J. Zr61Ti2Cu25Al12 bulk metallic glass under three-point bending: Characteristic of large-deflection deformation [J]. Intermetallics, 2021, 132: 107156
doi: 10.1016/j.intermet.2021.107156
21 Lin X H. Bulk glass formation and crystallization of Zr-Ti based alloys [D]. Pasadena: California Institute of Technology, 1997
22 Wang W H. The elastic properties, elastic models and elastic perspectives of metallic glasses [J]. Prog. Mater. Sci., 2012, 57: 487
doi: 10.1016/j.pmatsci.2011.07.001
23 Li H, Subhash G, Kecskes L J. Mechanical behavior of tungsten preform reinforced bulk metallic glass composites [J]. Mater. Sci. Eng., 2005, A403: 134
24 Lin T, Hu Y, Kong L T, et al. Effect of surface roughness on plasticity of Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass [J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 1407
doi: 10.1016/S1003-6326(11)61333-2
25 Yao L Q. Flow behavior of Zr35Ti30Cu8 . 25Be 26.75 amorphous alloy at high temperature and high strain sate [D]. Wuhan: Huazhong University of Science and Technology, 2019
25 姚丽倩. Zr35Ti30Cu8 . 25Be 26.75非晶合金高温高应变速率流变行为研究 [D]. 武汉: 华中科技大学, 2019
26 Wang G, Shen J, Sun J F, et al. Superplasticity and superplastic forming ability of a Zr-Ti-Ni-Cu-Be bulk metallic glass in the supercooled liquid region [J]. J. Non-Cryst. Solids, 2005, 351: 209
doi: 10.1016/j.jnoncrysol.2004.11.006
27 Lv J W, Wang F L, Zhang S, et al. Deformation behaviours of TiZrCuNiBe bulk metallic glass in supercooled liquid region [J]. J. Alloys Compd., 2020, 844: 156101
doi: 10.1016/j.jallcom.2020.156101
28 Zhang M, Liu L, Wu Y. Facilitation and correlation of flow in metallic supercooled liquid [J]. J. Chem. Phys., 2013, 139: 164508
doi: 10.1063/1.4826318
29 Kato H, Kawamura Y, Inoue A, et al. Newtonian to non-Newtonian master flow curves of a bulk glass alloy Pd40Ni10Cu30P20 [J]. Appl. Phys. Lett., 1998, 73: 3665
doi: 10.1063/1.122856
30 Li C Y, Yin J F, Ding J Q, et al. A thermal processing map of a ZrCuNiAlEr bulk metallic glass in the supercooled liquid region [J]. J. Mater. Sci., 2019, 54: 7246
doi: 10.1007/s10853-019-03363-5
31 Qiao J C, Wang Y J, Pelletier J M, et al. Characteristics of stress relaxation kinetics of La60Ni15Al25 bulk metallic glass [J]. Acta Mater., 2015, 98: 43
doi: 10.1016/j.actamat.2015.07.020
32 Mei J N, Soubeyroux J L, Blandin J J, et al. Homogeneous deformation of Ti41.5Cu37.5Ni7.5Zr2.5Hf5Si1 bulk metallic glass in the supercooled liquid region [J]. Intermetallics, 2011, 19: 48
doi: 10.1016/j.intermet.2010.09.005
33 Bletry M, Guyot P, Brechet Y, et al. Homogeneous deformation of Zr-Ti-Al-Cu-Ni bulk metallic glasses [J]. Intermetallics, 2004, 12: 1051
doi: 10.1016/j.intermet.2004.04.019
34 Zhang C, Qiao J C, Pelletier J M, et al. Arrhenius activation of Zr65Cu18Ni7Al10 bulk metallic glass in the supercooled liquid region [J]. Intermetallics, 2017, 86: 88
doi: 10.1016/j.intermet.2017.03.017
35 Lu J, Ravichandran G, Johnson W L. Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures [J]. Acta Mater., 2003, 51: 3429
doi: 10.1016/S1359-6454(03)00164-2
36 Spaepen F, Turnbull D. A mechanism for the flow and fracture of metallic glasses [J]. Scr. Metall., 1974, 8: 563
doi: 10.1016/0036-9748(74)90070-2
37 Yao Z F, Qiao J C, Pelletier J M, et al. High temperature deformation behaviors of the Zr63.36Cu14.52Ni10.12Al12 bulk metallic glass [J]. J. Mater. Sci., 2016, 51: 4079
doi: 10.1007/s10853-016-9729-6
38 Cui J, Li J S, Wang J, et al. Rheological behavior of Cu-Zr-based metallic glass in the supercooled liquid region [J]. J. Alloys Compd., 2014, 592: 189
doi: 10.1016/j.jallcom.2014.01.014
39 Gun B, Laws K J, Ferry M. Elevated temperature flow behaviour of a Mg-based bulk metallic glass [J]. Mater. Sci. Eng., 2007, A471: 130
40 Tao M, Chokshi A H, Conner R D, et al. Deformation and crystallization of Zr-based amorphous alloys in homogeneous flow regime [J]. J. Mater. Res., 2010, 25: 1137
doi: 10.1557/JMR.2010.0134
41 Han Z, Li Y. Cooperative shear and catastrophic fracture of bulk metallic glasses from a shear-band instability perspective [J]. J. Mater. Res., 2009, 24: 3620
doi: 10.1557/jmr.2009.0442
42 Hu L, Ye F, Liang Y F, et al. Correlating the supercooled liquid region width with the fragility parameter in bulk metallic glasses [J]. Appl. Phys. Lett., 2012, 100: 021906
43 Evenson Z, Schmitt T, Nicola M, et al. High temperature melt viscosity and fragile to strong transition in Zr-Cu-Ni-Al-Nb(Ti) and Cu47Ti34Zr11Ni8 bulk metallic glasses [J]. Acta Mater., 2012, 60: 4712
doi: 10.1016/j.actamat.2012.05.019
44 Jia P, Xu J. Comparison of bulk metallic glass formation between Cu-Hf binary and Cu-Hf-Al ternary alloys [J]. J. Mater. Res., 2009, 24: 96
doi: 10.1557/JMR.2009.0014
45 Angell C A. Formation of glasses from liquids and biopolymers [J]. Science, 1995, 267: 1924
pmid: 17770101
46 Kato H, Wada T, Hasegawa M, et al. Fragility and thermal stability of Pt- and Pd-based bulk glass forming liquids and their correlation with deformability [J]. Scr. Mater., 2006, 54: 2023
doi: 10.1016/j.scriptamat.2006.03.025
47 Johnson W L, Na J H, Demetriou M D. Quantifying the origin of metallic glass formation [J]. Nat. Commun., 2016, 7: 10313
doi: 10.1038/ncomms10313 pmid: 26786966
48 Tong Y, Qiao J C, Pelletier J M, et al. Strong metallic glass: TiZr-HfCuNiBe high entropy alloy [J]. J. Alloys Compd., 2020, 820: 153119
doi: 10.1016/j.jallcom.2019.153119
49 Jiang H R, Bochtler B, Frey M, et al. Equilibrium viscosity and structural change in the Cu47.5Zr45.1Al7.4 bulk glass-forming liquid [J]. Acta Mater., 2020, 184: 69
doi: 10.1016/j.actamat.2019.11.039
50 Glade S C, Johnson W L. Viscous flow of the Cu47Ti34Zr11Ni8 glass forming alloy [J]. J. Appl. Phys., 2000, 87: 7249
doi: 10.1063/1.373411
51 Takeuchi A, Kato H, Inoue A. Vogel-Fulcher-Tammann plot for viscosity scaled with temperature interval between actual and ideal glass transitions for metallic glasses in liquid and supercooled liquid states [J]. Intermetallics, 2010, 18: 406
doi: 10.1016/j.intermet.2009.08.015
52 Wang W M, Gebert A, Roth S, et al. Glass formability and fragility of Fe61Co9 - x Zr8Mo5W x B17 (x = 0 and 2) bulk metallic glassy alloys [J]. Intermetallics, 2008, 16: 267
doi: 10.1016/j.intermet.2007.10.005
53 Yang Y, Zhou J H, Zhu F, et al. Determining the three-dimensional atomic structure of an amorphous solid [J]. Nature, 2021, 592: 60
doi: 10.1038/s41586-021-03354-0
[1] 李金富, 李伟. 铝基非晶合金的结构与非晶形成能力[J]. 金属学报, 2022, 58(4): 457-472.
[2] 张金勇, 赵聪聪, 吴宜谨, 陈长玖, 陈正, 沈宝龙. (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x 高熵非晶合金薄带的结构特征及其晶化行为[J]. 金属学报, 2022, 58(2): 215-224.
[3] 韩录会, 柯海波, 张培, 桑革, 黄火根. 非晶态U60Fe27.5Al12.5 合金的晶化动力学行为[J]. 金属学报, 2022, 58(10): 1316-1324.
[4] 胡祥, 葛嘉城, 刘思楠, 伏澍, 吴桢舵, 冯涛, 刘冬, 王循理, 兰司. 具有异常放热现象的Fe-Nb-B-Y非晶合金燃烧机理[J]. 金属学报, 2021, 57(4): 542-552.
[5] 李宁, 黄信. 块体非晶合金的3D打印成形研究进展[J]. 金属学报, 2021, 57(4): 529-541.
[6] 潘杰, 段峰辉. 非晶合金的回春行为[J]. 金属学报, 2021, 57(4): 439-452.
[7] 毕甲紫, 刘晓斌, 李然, 张涛. 非晶合金粉末作为润滑油添加剂的摩擦学性能[J]. 金属学报, 2021, 57(4): 559-566.
[8] 刘日平, 马明臻, 张新宇. 块体非晶合金铸造成形的研究新进展[J]. 金属学报, 2021, 57(4): 515-528.
[9] 朱敏, 欧阳柳章. 镁基储氢合金动力学调控及电化学性能[J]. 金属学报, 2021, 57(11): 1416-1428.
[10] 黄火根, 张鹏国, 张培, 王勤国. U-CoU-Fe基础体系非晶形成能力的比较[J]. 金属学报, 2020, 56(6): 849-854.
[11] 耿遥祥, 王英敏. 铁基非晶合金局域结构与性能关联:基于微合金化机理研究[J]. 金属学报, 2020, 56(11): 1558-1568.
[12] 徐秀月, 李艳辉, 张伟. Fe(Pt, Ru)B非晶带材脱合金制备纳米多孔PtRuFe及其甲醇电催化性能[J]. 金属学报, 2020, 56(10): 1393-1400.
[13] 杨高林, 林鑫, 卢献钢. 激光多次熔凝Zr55Cu30Al10Ni5非晶合金的晶化形态与演化机理[J]. 金属学报, 2019, 55(12): 1544-1550.
[14] 金辰日, 杨素媛, 邓学元, 王扬卫, 程兴旺. 纳米晶化对锆基非晶合金动态压缩性能的影响[J]. 金属学报, 2019, 55(12): 1561-1568.
[15] 张媛媛,林鑫,魏雷,任永明. 激光立体成形退火态Zr55Cu30Al10Ni5粉末的晶化行为[J]. 金属学报, 2017, 53(7): 824-832.