|
|
Zr61Cu25Al12Ti2 和Zr52.5Cu17.9Ni14.6Al10Ti5 块体非晶合金过冷液相区的塑性流变行为 |
刘帅帅, 侯超楠, 王恩刚, 贾鹏( ) |
东北大学 冶金学院 材料电磁过程研究教育部重点实验室 沈阳 110819 |
|
Plastic Rheological Behaviors of Zr61Cu25Al12Ti2 and Zr52.5Cu17.9Ni14.6Al10Ti5 Amorphous Alloys in the Supercooled Liquid Region |
LIU Shuaishuai, HOU Chaonan, WANG Engang, JIA Peng( ) |
Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), School of Metallurgy, Northeastern University, Shenyang 110819, China |
引用本文:
刘帅帅, 侯超楠, 王恩刚, 贾鹏. Zr61Cu25Al12Ti2 和Zr52.5Cu17.9Ni14.6Al10Ti5 块体非晶合金过冷液相区的塑性流变行为[J]. 金属学报, 2022, 58(6): 807-815.
Shuaishuai LIU,
Chaonan HOU,
Engang WANG,
Peng JIA.
Plastic Rheological Behaviors of Zr61Cu25Al12Ti2 and Zr52.5Cu17.9Ni14.6Al10Ti5 Amorphous Alloys in the Supercooled Liquid Region[J]. Acta Metall Sin, 2022, 58(6): 807-815.
1 |
Inoue A. High strength bulk amorphous alloys with low critical cooling rates (overview) [J]. Mater. Trans. JIM, 1995, 36: 866
|
2 |
Jin C R, Yang S Y, Deng X Y, et al. Effect of nano-crystallization on dynamic compressive property of Zr-based amorphous alloy [J]. Acta Metall. Sin., 2019, 55: 1561
|
2 |
金辰日, 杨素媛, 邓学元 等. 纳米晶化对锆基非晶合金动态压缩性能的影响 [J]. 金属学报, 2019, 55: 1561
doi: 10.11900/0412.1961.2019.00207
|
3 |
Wang W H. The nature and properties of amorphous matter [J]. Prog. Phys., 2013, 33: 177
|
3 |
汪卫华. 非晶态物质的本质和特性 [J]. 物理学进展, 2013, 33: 177
|
4 |
Telford M. The case for bulk metallic glass [J]. Mater. Today, 2004, 7: 36
|
5 |
Khan M M, Nemati A, Ur Rahman Z, et al. Recent advancements in bulk metallic glasses and their applications: A review [J]. Crit. Rev. Solid State Mater. Sci., 2018, 43: 233
doi: 10.1080/10408436.2017.1358149
|
6 |
Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses [J]. Acta Metall., 1976, 25: 407
doi: 10.1016/0001-6160(77)90232-2
|
7 |
Argon A. Plastic deformation in metallic glasses [J]. Acta Metall., 1979, 27: 47
doi: 10.1016/0001-6160(79)90055-5
|
8 |
Heggen M, Spaepen F, Feuerbacher M. Creation and annihilation of free volume during homogeneous flow of a metallic glass [J]. J. Appl. Phys., 2005, 97: 033506
|
9 |
Zhang Z F, Qu R T, Liu Z Q. Advances in fracture behavior and strength theory of metallic glasses [J]. Acta Metall. Sin., 2016, 52: 1171
|
9 |
张哲峰, 屈瑞涛, 刘增乾. 金属玻璃的断裂行为与强度理论研究进展 [J]. 金属学报, 2016, 52: 1171
|
10 |
Shen J, Wang G, Sun J F, et al. Superplastic flow behavior of Zr base bulk metallic glass in supercooled liquid region [J]. Acta Metall. Sin., 2004, 40: 518
|
10 |
沈 军, 王 刚, 孙剑飞 等. Zr基块体非晶合金在过冷液相区的超塑性流变行为 [J]. 金属学报, 2004, 40: 518
|
11 |
Lee K S, Bang W K, Ha T K, et al. Study on the high-temperature deformation behavior and formability of Zr-based bulk metallic glass [J]. J. Metastable Nanocryst. Mater., 2003, 15-16: 155
|
12 |
Zhang Z H, Zhou C, Xie J X. Superplastic extrusion behaviors of Zr55Al10Ni5Cu30 bulk metallic glass [J]. Chin. J. Nonferrous Met., 2005, 15: 33
|
12 |
张志豪, 周 成, 谢建新. Zr55Al10Ni5Cu30大块非晶合金的超塑性挤压成形性能 [J]. 中国有色金属学报, 2005, 15: 33
|
13 |
Xu W L, Li W B, Chen S B, et al. Superplastic diffusion bonding of metallic glasses by rapid heating [J]. Intermetallics, 2018, 98: 143
doi: 10.1016/j.intermet.2018.05.001
|
14 |
Chen W, Liu Z, Schroers J. Joining of bulk metallic glasses in air [J]. Acta Mater., 2014, 62: 49
doi: 10.1016/j.actamat.2013.08.053
|
15 |
Nishiyama N, Amiya K, Inoue A. Bulk metallic glasses for industrial products [J]. Mater. Trans., 2004, 45: 1245
doi: 10.2320/matertrans.45.1245
|
16 |
Liu Z, Schroers J. General nanomoulding with bulk metallic glasses [J]. Nanotechnology, 2015, 26: 145301
doi: 10.1088/0957-4484/26/14/145301
|
17 |
Cohen M H, Turnbull D. Molecular transport in liquids and glasses [J]. J. Chem. Phys., 1959, 31: 1164
doi: 10.1063/1.1730566
|
18 |
Inoue A, Zhang T, Nishiyama N, et al. Preparation of 16 mm diameter rod of amorphous Zr65Al7.5Ni10Cu17.5 alloy [J]. Mater. Trans. JIM, 1993, 34: 1234
|
19 |
He Q, Xu J. Locating malleable bulk metallic glasses in Zr-Ti-Cu-Al alloys with calorimetric glass transition temperature as an indicator [J]. J. Mater. Sci. Technol., 2012, 28: 1109
doi: 10.1016/S1005-0302(12)60180-7
|
20 |
Li D F, Shen Y, Xu J. Zr61Ti2Cu25Al12 bulk metallic glass under three-point bending: Characteristic of large-deflection deformation [J]. Intermetallics, 2021, 132: 107156
doi: 10.1016/j.intermet.2021.107156
|
21 |
Lin X H. Bulk glass formation and crystallization of Zr-Ti based alloys [D]. Pasadena: California Institute of Technology, 1997
|
22 |
Wang W H. The elastic properties, elastic models and elastic perspectives of metallic glasses [J]. Prog. Mater. Sci., 2012, 57: 487
doi: 10.1016/j.pmatsci.2011.07.001
|
23 |
Li H, Subhash G, Kecskes L J. Mechanical behavior of tungsten preform reinforced bulk metallic glass composites [J]. Mater. Sci. Eng., 2005, A403: 134
|
24 |
Lin T, Hu Y, Kong L T, et al. Effect of surface roughness on plasticity of Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass [J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 1407
doi: 10.1016/S1003-6326(11)61333-2
|
25 |
Yao L Q. Flow behavior of Zr35Ti30Cu8 . 25Be 26.75 amorphous alloy at high temperature and high strain sate [D]. Wuhan: Huazhong University of Science and Technology, 2019
|
25 |
姚丽倩. Zr35Ti30Cu8 . 25Be 26.75非晶合金高温高应变速率流变行为研究 [D]. 武汉: 华中科技大学, 2019
|
26 |
Wang G, Shen J, Sun J F, et al. Superplasticity and superplastic forming ability of a Zr-Ti-Ni-Cu-Be bulk metallic glass in the supercooled liquid region [J]. J. Non-Cryst. Solids, 2005, 351: 209
doi: 10.1016/j.jnoncrysol.2004.11.006
|
27 |
Lv J W, Wang F L, Zhang S, et al. Deformation behaviours of TiZrCuNiBe bulk metallic glass in supercooled liquid region [J]. J. Alloys Compd., 2020, 844: 156101
doi: 10.1016/j.jallcom.2020.156101
|
28 |
Zhang M, Liu L, Wu Y. Facilitation and correlation of flow in metallic supercooled liquid [J]. J. Chem. Phys., 2013, 139: 164508
doi: 10.1063/1.4826318
|
29 |
Kato H, Kawamura Y, Inoue A, et al. Newtonian to non-Newtonian master flow curves of a bulk glass alloy Pd40Ni10Cu30P20 [J]. Appl. Phys. Lett., 1998, 73: 3665
doi: 10.1063/1.122856
|
30 |
Li C Y, Yin J F, Ding J Q, et al. A thermal processing map of a ZrCuNiAlEr bulk metallic glass in the supercooled liquid region [J]. J. Mater. Sci., 2019, 54: 7246
doi: 10.1007/s10853-019-03363-5
|
31 |
Qiao J C, Wang Y J, Pelletier J M, et al. Characteristics of stress relaxation kinetics of La60Ni15Al25 bulk metallic glass [J]. Acta Mater., 2015, 98: 43
doi: 10.1016/j.actamat.2015.07.020
|
32 |
Mei J N, Soubeyroux J L, Blandin J J, et al. Homogeneous deformation of Ti41.5Cu37.5Ni7.5Zr2.5Hf5Si1 bulk metallic glass in the supercooled liquid region [J]. Intermetallics, 2011, 19: 48
doi: 10.1016/j.intermet.2010.09.005
|
33 |
Bletry M, Guyot P, Brechet Y, et al. Homogeneous deformation of Zr-Ti-Al-Cu-Ni bulk metallic glasses [J]. Intermetallics, 2004, 12: 1051
doi: 10.1016/j.intermet.2004.04.019
|
34 |
Zhang C, Qiao J C, Pelletier J M, et al. Arrhenius activation of Zr65Cu18Ni7Al10 bulk metallic glass in the supercooled liquid region [J]. Intermetallics, 2017, 86: 88
doi: 10.1016/j.intermet.2017.03.017
|
35 |
Lu J, Ravichandran G, Johnson W L. Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures [J]. Acta Mater., 2003, 51: 3429
doi: 10.1016/S1359-6454(03)00164-2
|
36 |
Spaepen F, Turnbull D. A mechanism for the flow and fracture of metallic glasses [J]. Scr. Metall., 1974, 8: 563
doi: 10.1016/0036-9748(74)90070-2
|
37 |
Yao Z F, Qiao J C, Pelletier J M, et al. High temperature deformation behaviors of the Zr63.36Cu14.52Ni10.12Al12 bulk metallic glass [J]. J. Mater. Sci., 2016, 51: 4079
doi: 10.1007/s10853-016-9729-6
|
38 |
Cui J, Li J S, Wang J, et al. Rheological behavior of Cu-Zr-based metallic glass in the supercooled liquid region [J]. J. Alloys Compd., 2014, 592: 189
doi: 10.1016/j.jallcom.2014.01.014
|
39 |
Gun B, Laws K J, Ferry M. Elevated temperature flow behaviour of a Mg-based bulk metallic glass [J]. Mater. Sci. Eng., 2007, A471: 130
|
40 |
Tao M, Chokshi A H, Conner R D, et al. Deformation and crystallization of Zr-based amorphous alloys in homogeneous flow regime [J]. J. Mater. Res., 2010, 25: 1137
doi: 10.1557/JMR.2010.0134
|
41 |
Han Z, Li Y. Cooperative shear and catastrophic fracture of bulk metallic glasses from a shear-band instability perspective [J]. J. Mater. Res., 2009, 24: 3620
doi: 10.1557/jmr.2009.0442
|
42 |
Hu L, Ye F, Liang Y F, et al. Correlating the supercooled liquid region width with the fragility parameter in bulk metallic glasses [J]. Appl. Phys. Lett., 2012, 100: 021906
|
43 |
Evenson Z, Schmitt T, Nicola M, et al. High temperature melt viscosity and fragile to strong transition in Zr-Cu-Ni-Al-Nb(Ti) and Cu47Ti34Zr11Ni8 bulk metallic glasses [J]. Acta Mater., 2012, 60: 4712
doi: 10.1016/j.actamat.2012.05.019
|
44 |
Jia P, Xu J. Comparison of bulk metallic glass formation between Cu-Hf binary and Cu-Hf-Al ternary alloys [J]. J. Mater. Res., 2009, 24: 96
doi: 10.1557/JMR.2009.0014
|
45 |
Angell C A. Formation of glasses from liquids and biopolymers [J]. Science, 1995, 267: 1924
pmid: 17770101
|
46 |
Kato H, Wada T, Hasegawa M, et al. Fragility and thermal stability of Pt- and Pd-based bulk glass forming liquids and their correlation with deformability [J]. Scr. Mater., 2006, 54: 2023
doi: 10.1016/j.scriptamat.2006.03.025
|
47 |
Johnson W L, Na J H, Demetriou M D. Quantifying the origin of metallic glass formation [J]. Nat. Commun., 2016, 7: 10313
doi: 10.1038/ncomms10313
pmid: 26786966
|
48 |
Tong Y, Qiao J C, Pelletier J M, et al. Strong metallic glass: TiZr-HfCuNiBe high entropy alloy [J]. J. Alloys Compd., 2020, 820: 153119
doi: 10.1016/j.jallcom.2019.153119
|
49 |
Jiang H R, Bochtler B, Frey M, et al. Equilibrium viscosity and structural change in the Cu47.5Zr45.1Al7.4 bulk glass-forming liquid [J]. Acta Mater., 2020, 184: 69
doi: 10.1016/j.actamat.2019.11.039
|
50 |
Glade S C, Johnson W L. Viscous flow of the Cu47Ti34Zr11Ni8 glass forming alloy [J]. J. Appl. Phys., 2000, 87: 7249
doi: 10.1063/1.373411
|
51 |
Takeuchi A, Kato H, Inoue A. Vogel-Fulcher-Tammann plot for viscosity scaled with temperature interval between actual and ideal glass transitions for metallic glasses in liquid and supercooled liquid states [J]. Intermetallics, 2010, 18: 406
doi: 10.1016/j.intermet.2009.08.015
|
52 |
Wang W M, Gebert A, Roth S, et al. Glass formability and fragility of Fe61Co9 - x Zr8Mo5W x B17 (x = 0 and 2) bulk metallic glassy alloys [J]. Intermetallics, 2008, 16: 267
doi: 10.1016/j.intermet.2007.10.005
|
53 |
Yang Y, Zhou J H, Zhu F, et al. Determining the three-dimensional atomic structure of an amorphous solid [J]. Nature, 2021, 592: 60
doi: 10.1038/s41586-021-03354-0
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|