Please wait a minute...
金属学报  2020, Vol. 56 Issue (3): 278-290    DOI: 10.11900/0412.1961.2019.00259
  研究论文 本期目录 | 过刊浏览 |
Si对铸造超高铬高碳双相钢组织及性能的影响
王桂芹,王琴,车宏龙,李亚军,雷明凯()
大连理工大学材料科学与工程学院表面工程实验室 大连 116024
Effects of Silicon on the Microstructure and Propertiesof Cast Duplex Stainless Steel with Ultra-HighChromium and High Carbon
WANG Guiqin,WANG Qin,CHE Honglong,LI Yajun,LEI Mingkai()
Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
引用本文:

王桂芹,王琴,车宏龙,李亚军,雷明凯. Si对铸造超高铬高碳双相钢组织及性能的影响[J]. 金属学报, 2020, 56(3): 278-290.
Guiqin WANG, Qin WANG, Honglong CHE, Yajun LI, Mingkai LEI. Effects of Silicon on the Microstructure and Propertiesof Cast Duplex Stainless Steel with Ultra-HighChromium and High Carbon[J]. Acta Metall Sin, 2020, 56(3): 278-290.

全文: PDF(26061 KB)   HTML
摘要: 

针对0.46%Si (质量分数)和1.36%Si 2种40%超高铬1.5%高碳双相钢,采用OM、SEM、EPMA、XRD及化学分析等方法研究了2种钢的成分、铸态组织和凝固过程,以及固溶处理后钢的组织和相结构的变化。结果表明,2种钢铸态组织均由γ奥氏体、σ相和M23C6组成。Si含量为0.46%时,先析出树枝状δ铁素体,随后为(δ+M23C6)eutecticγperitectic,最后为(γ+M23C6)eutectic,其中δ铁素体在后续冷却过程中共析转变为(γ2+σ)eutectoid。Si含量为1.36%时,δ铁素体量增加导致σ相明显增加,包晶γ变为断续不规则形状,无(γ+M23C6)eutectic形成。固溶处理后,0.46%Si和1.36%Si 2种超高铬高碳双相钢均由铁素体、奥氏体和M23C6型碳化物三相组成,但Si含量的增加,明显提高了组织中铁素体的含量和连续性。实验结果还表明,Si使超高铬高碳钢的硬度、抗拉强度和断裂韧性有所增加,对耐蚀性影响不明显,但使耐磨性能略有下降。

关键词 超高铬高碳双相不锈钢凝固过程    
Abstract

Duplex stainless steels have excellent corrosion resistance, but its insufficient wear resistance limits its application scope. Therefore, alloying of duplex stainless steels to form hard phases, such as carbides, becomes one of the important research directions to enhance their wear resistance keeping their good corrosion resistance. Specifically, carbides are considered as an ideal hard phase to strengthen Fe-Cr-C alloys, where their types, hardness, volume fraction, morphology, size, spacing and interconnecting feature are the important factors affecting the wear resistance of the alloys. It has been shown that, Si as an alloying addition can modify the carbide precipitates in type, phase morphology and distribution in Fe-Cr-C alloys, having an obvious influence on their wear and corrosion resistance as well as their mechanical properties. In this work, the microstructure and properties of two types of ultra-high chromium (40%, mass fraction) and high carbon (1.5%) duplex stainless steels with different concentrations of Si (0.46% and 1.36%) are investigated. The composition, as-cast microstructure and solidification process as well as the changes in the microstructure, phase structure after solution treatment were studied by chemical analysis, OM, SEM, EPMA and XRD. The mechanical properties including hardness, tensile strength, fracture toughness, corrosion resistance and wear resistance have been tested correspondingly. It is revealed that, both the two kinds of duplex stainless steels have a constitution of three phases in as-cast state, i.e. γ phase, σ phase and M23C6. During the solidification process of the steel with 0.46%Si, δ ferrite dendrite forms at the beginning, followed by eutectic (δ+M23C6), peritectic γ, and finally eutectic (γ+M23C6), in which the δ phase transformed into eutectoid (γ2+σ) in the subsequent cooling process. For the duplex stainless steel with 1.36%Si, the increase of δ ferrite amount is observed leading to obviously increased content of σ phase, the morphology of peritectic γ becomes intermittent and irregular shape, and no eutectic (γ+M23C6) forms. After solution treatment, the two kinds of steels are composed of ferrite, austenite and M23C6 type carbide. Note that, the volume fraction and continuity of α ferrite are promoted obviously by increasing Si content from 0.46% to 1.36%. The Si addition slightly improves the hardness, tensile strength and fracture toughness of the duplex stainless steel, while has little effect on the corrosion resistance and slightly reduces the wear resistance.

Key wordsultra-high chromium high carbon    duplex stainless steel    silicon    solidification process
收稿日期: 2019-08-02     
ZTFLH:  TG13  
基金资助:国家重点基础研究发展计划项目(2015CB057306);国家自然科学基金项目(U1508218)
作者简介: 王桂芹,女,1961年生,副教授,博士
SteelSiCCrMnNiMoCuNFe
0.46%Si0.461.5240.480.685.922.450.970.125Bal.
1.36%Si1.361.4239.450.436.102.601.130.120Bal.
表1  2种超高铬高碳钢的化学成分 (mass fraction / %)
图1  超高铬高碳钢铸态试样的XRD谱
图2  含0.46%Si超高铬高碳钢铸态金相组织
图3  含1.36%Si超高铬高碳钢铸态金相组织
图4  超高铬高碳钢铸态试样的背散射电子像
SteelPointFeCrCNiMoMnCuSiN
0.46%Si1#59.18626.884-9.4101.1660.6811.6770.4610.535
2#59.95126.3140.0549.2691.2560.6701.4940.4880.504
3#20.76969.3774.3891.6493.1820.5010.1320.001-
4#54.60236.311-4.2722.9000.5830.5280.6920.113
5#62.01426.973-7.1601.3720.6471.3640.4200.049
1.36%Si1*56.49728.070-10.0671.3750.5971.7551.2630.376
2*19.83269.4984.4651.6423.7110.5280.1510.0220.151
3*50.66137.148-5.5793.8310.5610.5342.032-
4*63.97022.784-8.5100.3090.5882.4830.9800.376
表2  图4中超高铬高碳钢铸态试样微区成分分析 (mass fraction / %)
图5  超高铬高碳钢铸态刻蚀SEM像
SteelPointFeCrMoNiSi
0.46%Si1#50.7540.703.544.170.84
2#19.9272.935.991.16-
1.36%Si1*48.4837.564.556.552.86
2*19.6771.286.762.210.08
表3  图5中超高铬高碳钢铸态试样EDS分析 (mass fraction / %)
图6  超高铬高碳钢固溶处理试样的XRD谱
图7  超高铬高碳钢固溶处理试样的金相组织
图8  超高铬高碳钢固溶处理试样的背散射电子像
SteelPointFeCrCNiMoMnCuSiN
0.46%Si1#58.85626.5400.15810.6321.2660.7481.2640.2790.258
2#58.85833.639-5.4981.8870.5811.0630.6200.045
3#18.50069.4145.4471.9654.0300.4850.0820.0010.076
1.36%Si1*56.54428.002-9.4491.3620.5171.6011.3550.126
2*55.64932.219-6.8772.0470.3211.1021.7860.000
3*18.54069.7135.5821.7074.0890.1480.1970.0240.000
表4  图8中超高铬高碳钢固溶处理试样微区成分分析 (mass fraction / %)
SteelAs-castSolution treatment
HRCHRCσb / MPaKIC / (MPa·m1/2)
0.46%Si52.241.579328.321
1.36%Si56.542.183532.678
表5  超高铬高碳钢力学性能
图9  超高铬高碳钢固溶处理试样的工程应力-应变曲线
图10  超高铬高碳钢固溶处理试样的拉伸断口形貌
图11  超高铬高碳钢固溶处理试样的摩擦系数曲线
图12  超高铬高碳钢固溶处理试样的磨痕表面形貌
图13  超高铬高碳钢固溶处理试样在硼酸溶液中的阳极极化曲线
图14  超高铬高碳钢固溶处理试样在硼酸溶液中自钝化膜的Mott-Schottky曲线
SteelNDNAEfb (vs SCE)
1020 cm-31020 cm-3mV
0.46%Si3.36.6-439
1.36%Si3.46.9-430
表6  超高铬高碳钢固溶处理试样在硼酸溶液中自钝化膜载流子浓度及平带电位
图15  Fe-Cr-C三元合金相图液相面投影示意图
[1] Liang T, Kang X H, Hu X Q, et al. Investigation on heat treatment of a duplex stainless steel for nuclear power plant impeller [J]. Acta Metall. Sin., 2011, 47: 921
[1] 梁 田, 康秀红, 胡小强等. 核电叶轮用双相不锈钢热处理工艺研究 [J]. 金属学报, 2011, 47: 921
[2] Guha P, Clark C A. Properties and applications of high chromium duplex stainless steels [A]. Proceedings of Conference on Duplex Stainless Steel [C]. Ohio: American Society for Metals, 1983: 355
[3] Atkinson R F, King R W. The properties and applications of two cast duplex stainless steels [A]. Proceedings of Conference on Duplex Stainless Steel [C]. Ohio: American Society for Metals, 1983: 399
[4] Dwars A, Emmel A. Funktionale oberfl?chen auf duplex‐stahl durch laserfeinbeschichten [J]. Materialwiss. Werkstofftech., 2008, 39: 511
[5] Dwars A, Prechtl W, Schr?pfer J, et al. Legierungstechnische M?glichkeiten zur Erh?hung der Korrosionsbest?ndigkeit verschlei?best?ndiger Duplex-St?hle [J]. Mater. Corros., 1995, 46: 674
[6] Tabrett C P, Sare I R, Gomashchi M R. Microstructure-property relationships in high chromium white iron alloys [J]. Int. Mater. Rev., 1996, 41: 59
[7] Wang J L, Sun X W, Zhang H C. Effect of alloys element on abrasive resistance of high chromium cast iron [J]. Hot Work. Technol., 2016, 45(20): 42
[7] 王建玲, 孙秀伟, 张洪潮. 合金元素对高铬铸铁耐磨性能的影响 [J]. 热加工工艺, 1996, 45(20): 42
[8] Liang G Y, Su J Y. The effect of rare earth elements on the growth of eutectic carbides in white cast irons containing chromium [J]. Cast Met., 1992, 4: 83
[9] Wu H Q, Sasaguri N, Matsubara Y, et al. Solidification of multi-alloyed white cast iron: Type and morphology of carbides [J]. AFS Trans., 1996, 104: 103
[10] Dupin P, Schissler J M. Influence of addition of silicon, molybdenum, vanadium, and tungsten upon the structural evolution of the as-cast state of a high-cromium cast iron (20% Cr, 2.6% C) [J]. AFS Trans., 1984, 92: 355
[11] Fulcher J K, Kosel T H, Fiore N F. The effect of carbide volume fraction on the low stress abrasion resistance of high Cr-Mo white cast irons [J]. Wear, 1983, 84: 31
[12] Gahr K H Z, Eldis G T. Abrasive wear of white cast irons [J]. Wear, 1980, 64: 175
[13] Charles J. Super duplex stainless steels: Structure and properties [A]. Duplex Stainless Steel '91 [C]. Les Ulis: Les Editions de Physique, 1991: 3
[14] Sch?n C G, Sinatora A. Simulation of solidification paths in high chromium white cast irons for wear applications [J]. Calphad, 1998, 22: 437
[15] Jacuinde A B, Rainforth W M. The wear behaviour of high-chromium white cast irons as a function of silicon and mischmetal content [J]. Wear, 2001, 250: 449
[16] Lai J P, Pan Q L, Peng H J, et al. Effects of Si on the microstructures and mechanical properties of high-chromium cast iron [J]. J. Mater. Eng. Perform., 2016, 25: 4617
[17] Lai J P, Pan Q L, Sun Y W, et al. Effect of Si content on the microstructure and wear resistance of high chromium cast iron [J]. ISIJ Int., 2018, 58: 1532
[18] Powell G, Randle V. The effect of Si on the relationship between orientation and carbide morphology in high chromium white irons [J]. J. Mater. Sci., 1997, 32: 561
[19] Laird G, Powell G L F. Solidification and solid-state transformation mechanisms in Si alloyed high-chromium white cast irons [J]. Metall. Trans., 1993, 24A: 981
[20] Shen J, Zhou Q D. Solidification behaviour of boron-bearing high-chromium cast iron and the modification mechanism of silicon [J]. Cast Met., 1988, 1: 79
[21] Michalska J, Sozańska M. Qualitative and quantitative analysis of σ and χ phases in 2205 duplex stainless steel [J]. Mater. Charact., 2006, 56: 355
[22] Knyazeva M, Pohl M. Duplex steels. Part II: Carbides and nitrides [J]. Metallogr. Microstruct. Anal., 2013, 2: 343
[23] Hsieh C C, Wu W T. Phase transformation of δσ in multipass heat-affected and fusion zones of dissimilar stainless steels [J]. Met. Mater. Int., 2011, 17: 375
[24] Chen J Y, Yang Z Y, Yang W, et al. Characteristic of phase σ precipitation and its effects on behavior in duplex stainless steel [J]. J. Iron Steel Res. Int., 2006, 18(8): 1
[24] 陈嘉砚, 杨卓越, 杨 武等. 双相不锈钢中σ相的形成特点及其对性能的影响 [J]. 钢铁研究学报, 2006, 18(8): 1
[25] Liu F X. σ phase precipitation and its effect on mechanical properties of S32205 duplex stainless steel [J]. Iron Steel, 2010, 45(7): 62
[25] 刘复兴. S32205双相不锈钢中σ相的析出及其对力学性能的影响 [J]. 钢铁, 2010, 45(7): 62
[26] Montemor M F, Ferreira M G S, Hakiki N E, et al. Chemical composition and electronic structure of the oxide films formed on 316L stainless steel and nickel based alloys in high temperature aqueous environments [J]. Corros. Sci., 2000, 42: 1635
[27] Rivlin V G. Critical review of constitution of carbon-chromium-iron and carbon-iron-manganese systems [J]. Int. Mater. Rev., 1984, 29: 299
[28] Cui T H, Zhu L Y, He J Z, et al. Effect of Si content on microstructure and properties of DP600 hot rolled dual phase steel [J]. T. Mater. Heat Treat., 2015, 36(9): 103
[28] 崔田灏, 周乐育, 何建中等. Si含量对DP-600级别热轧双相钢组织及性能的影响 [J]. 材料热处理学报, 2015, 36(9): 103
[29] Guo H X, Zhang J M, Xia S L. Analysis on abnormal structure in color metallography of as-cast duplex stainless steel [J]. Phys. Test. Chem. Anal. Phys. Test., 2014, 50(4): 273
[29] 郭海霞, 张金民, 夏申林. 铸态双相不锈钢彩色金相异常组织分析 [J]. 理化检验-物理分册, 2014, 50(4): 273
[30] Wu J. Duplex Stainless Steel [M]. Beijing: Metallurgical Industry Press, 1999: 31
[30] 吴 玖. 双相不锈钢 [M]. 北京: 冶金工业出版社, 1999: 31
[31] Lin D Y, Chang T C, Liu G L. Effect of Si contents on the growth behavior of σ phase in USU 309L stainless steel [J]. Scr. Mater., 2003, 49: 855
[32] ?Norstr?m L, Pettersson S, Nordin S. σ-phase embrittlement in some ferritic-austenitic stainless steels [J]. Mater. Sci. Eng. Technol., 1981, 12: 229
[33] Svensson L E, Gretoft B, Ulander B, et al. Fe-Cr-C hardfacing alloys for high-temperature applications [J]. J. Mater. Sci., 1986, 21: 1015
[34] Chang C M, Lin C M, Hsieh C C, et al. Micro-structural characteristics of Fe-40wt%Cr-xC hardfacing alloys with [1.0-4.0wt%] carbon content [J]. J. Alloys Compd., 2009, 487: 83
[35] Wang B C. Material Corrosion and Protection [M]. Beijing: Peking University Press, 2012: 246
[35] 王保成. 材料腐蚀与防护 [M]. 北京: 北京大学出版社, 2012: 246
[1] 王京阳, 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升[J]. 金属学报, 2023, 59(4): 523-536.
[2] 丛鸿达, 王金龙, 王成, 宁珅, 高若恒, 杜瑶, 陈明辉, 朱圣龙, 王福会. 新型无机硅酸盐复合涂层制备及其在高温水蒸气环境的氧化行为[J]. 金属学报, 2022, 58(8): 1083-1092.
[3] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[4] 陈果, 王新波, 张仁晓, 马成悦, 杨海峰, 周利, 赵运强. 搅拌头转速对2507双相不锈钢搅拌摩擦加工组织及性能的影响[J]. 金属学报, 2021, 57(6): 725-735.
[5] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[6] 许占一, 沙玉辉, 张芳, 章华兵, 李国保, 储双杰, 左良. 取向硅钢二次再结晶过程中的取向选择行为[J]. 金属学报, 2020, 56(8): 1067-1074.
[7] 邓亚辉, 杨银辉, 蒲超博, 倪珂, 潘晓宇. Mn23%CrNi型双相不锈钢高温拉伸行为的影响[J]. 金属学报, 2020, 56(7): 949-959.
[8] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[9] 刘巧沐,黄顺洲,刘芳,杨艳,南宏强,张东,孙文儒. B含量对K417G合金凝固过程中组织演变和力学性能的影响[J]. 金属学报, 2019, 55(6): 720-728.
[10] 金淼, 李文权, 郝硕, 梅瑞雪, 李娜, 陈雷. 固溶温度对Mn-N型双相不锈钢拉伸变形行为的影响[J]. 金属学报, 2019, 55(4): 436-444.
[11] 邓亚辉,杨银辉,曹建春,钱昊. 23Cr-2.2Ni-6.3Mn-0.26NNi型双相不锈钢动态再结晶行为研究[J]. 金属学报, 2019, 55(4): 445-456.
[12] 储双杰,杨勇杰,和正华,沙玉辉,左良. 基于磁畴结构交互作用的激光刻痕取向硅钢磁致伸缩系数计算[J]. 金属学报, 2019, 55(3): 362-368.
[13] 操发春, 吴航, 杨延格, 曹京宜, 张涛, 王福会. γ-APS接枝环氧树脂分子对环氧涂层/金属界面化学键合的研究[J]. 金属学报, 2019, 55(2): 238-248.
[14] 陈雷, 郝硕, 梅瑞雪, 贾伟, 李文权, 郭宝峰. 节约型双相不锈钢TRIP效应致塑性增量及其固溶温度依赖性[J]. 金属学报, 2019, 55(11): 1359-1366.
[15] 苏煜森, 杨银辉, 曹建春, 白于良. 节Ni型2101双相不锈钢的高温热加工行为研究[J]. 金属学报, 2018, 54(4): 485-493.