Please wait a minute...
金属学报  2019, Vol. 55 Issue (4): 496-510    DOI: 10.11900/0412.1961.2018.00191
  本期目录 | 过刊浏览 |
先共析渗碳体上形核的珠光体晶体学研究
徐文胜,张文征()
清华大学材料学院先进材料教育部重点实验室 北京 100084
An Investigation of the Crystallography of Pearlites Nucleated on the Proeutectoid Cementite
Wensheng XU,Wenzheng ZHANG()
Key Laboratory of Advanced Materials MOE, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(17397 KB)   HTML
摘要: 

利用SEM和EBSD技术表征了Fe-1.29C-13.9Mn (质量分数,%)钢中先共析渗碳体上形核珠光体的形貌和晶体学。大多数珠光体内铁素体与奥氏体之间接近K-S位向关系,与渗碳体之间则可出现多种择优位向关系。分析表明,魏氏渗碳体旁珠光体的形核领先相是铁素体,未观察到珠光体中渗碳体从魏氏渗碳体分支生长,或它们之间存在择优取向。晶界渗碳体旁珠光体存在2种可能:晶界渗碳体可延续为珠光体的渗碳体,同时铁素体往往与背靠奥氏体接近K-S位向关系,渗碳体可视为领先相,不排除铁素体为领先相的可能;同时也观察到晶界渗碳体与珠光体内渗碳体呈现不同取向,此时领先相是铁素体。珠光体团初期形貌不规则,生长后期两相基本保持平行片层结构,同一铁素体片层会存在取向变化甚至分层。

关键词 珠光体渗碳体形貌晶体学位向关系领先相    
Abstract

Pearlite is common microstructure in the carbon steel, which is widely applied in the railway steel and cold drawn steel where high wear resistance and strength are required. The pearlite colony is a circumscribed aggregate within which lamellae of cementite and ferrite phases have the same orientation. A cluster of wedge-shaped pearlite colonies will form the pearlite group nodules. The morphology of pearlite colonies will be influenced by the crystallography of pearlite. The common orientation relationship (OR) between pearlitic ferrite and pearlitic cementite is the Pitsch-Petch, Bagaryatsky, and Isaichev ORs. Combined with deep etching, SEM was used to investigate the morphology and crystallography of pearlite colonies and pearlite group nodules nucleated on the proeutectoid cementite in a Fe-1.29C-13.9Mn steel. The results showed that the initial morphology of the pearlite is irregular, but the pearlite possesses a parallel lamellar structure at the later stage of growth. Mutual ORs between phases of austenite, cementite, and ferrite in pearlite, proeutectoid grain boundary cementite, and Widmannstätten cementite were measured with the EBSD technique. Several reproducible ORs between cementite and ferrite lamellar have been observed, including the Pitsch-Petch, Bagaryatsky, and Isaichev ORs, without a particularly dominant OR. Since the two phases in the pearlite colonies have reproducible preferential OR, they are usually not independently nucleated, otherwise the independent nucleation of the cementite and ferrite inside the austenite has special crystallographic requirements for the mutual ORs between ferrite, cementite, and austenite. Thus, there will be a phase that nucleates first, which is called the "active nucleus". The active nucleus of pearlite has been carefully examined mainly according to the preferred OR between the pearlitic phases and existing phases. While the development of the pearlite crystallography is influenced by the active nucleus, no clear relationship was found between the ORs within the pearlite and active nucleus of the pearlite. The ORs between austenite and major pearlitic ferrite are near the K-S OR, but the ORs between austenite and the pearlitic cementite are various, depending on the preferred ORs between pearlitic ferrite and both austenite and pearlitic cementite. Widmannstätten cementite has never been seen to grow into pearlite. The measured data suggests that active nucleus of the pearlite colonies and pearlite group nodules nucleated on Widmannstätten cementite is ferrite. In some cases, grain boundary cementite was seen to grow as part of pearlite. Consequently, the grain boundary cementite is regarded as the active nucleus, though a preferred OR often coexists between pearlitic ferrite and either austenite or proeutectoid cementite. In other cases, the orientations of pearlitic cementite and grain-boundary cementite are discontinuous. For these cases, the ferrite is likely the active nucleus of pearlite. The orientation of pearlitic ferrite was seen to alter with the growth of pearlite, even causing the split of a single ferrite layer into two grain layers with a considerable misorientation. Significant distortion varying with the layers of pearlite was noticed in austenite near the pearlite growth front, indicating an evident strain field caused by the pearlite transformation. This requests a further investigation.

Key wordspearlite    cementite    morphology    crystallography    orientation relationship    active nucleus
收稿日期: 2018-05-15     
ZTFLH:  TG113  
基金资助:国家自然科学基金项目(No.51671111);国家重点研发计划项目(No.2016YFB0701304)
通讯作者: 张文征     E-mail: zhangwz@tsinghua.edu.cn
Corresponding author: Wenzheng ZHANG     E-mail: zhangwz@tsinghua.edu.cn
作者简介: 徐文胜,男,1990年生,博士生

引用本文:

徐文胜, 张文征. 先共析渗碳体上形核的珠光体晶体学研究[J]. 金属学报, 2019, 55(4): 496-510.
Wensheng XU, Wenzheng ZHANG. An Investigation of the Crystallography of Pearlites Nucleated on the Proeutectoid Cementite. Acta Metall Sin, 2019, 55(4): 496-510.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2018.00191      或      https://www.ams.org.cn/CN/Y2019/V55/I4/496

Orientation relationshipMathematical equation
Isaichev[13]1ˉ03C//(110)F; 010C//11ˉ1ˉF; [311]C0.91°//[11ˉ1]F
Bagaryatsky[12][100]C//[11ˉ0]F; 010C//11ˉ1ˉF; [001]C//[112ˉ]F
Pitsch-Petch[14,15][100]C2.6°//[131ˉ]F; 010C2.6°//113F;[001]C//[52ˉ1ˉ]F
New-2[16,17]1ˉ03C//(1ˉ01)F; 010C8.5°//131F; [311]C//[11ˉ1]F
New-3[16,17]022ˉC//(1ˉ01)F;[311]C//[11ˉ1]F; [100]C2.4°//[13ˉ1]F
New-4[16,17]210C//(1ˉ01)F; [001]C//[131]F; [1ˉ21]C5.9°//[101]F
表1  珠光体团内铁素体与渗碳体片层间几种常见位向关系[12,13,14,15,16,17]
图1  Fe-1.29C-13.9Mn钢在650 ℃保温15 h后早期珠光体团及团簇形貌的SEM像
图2  Fe-1.29C-13.9Mn钢在650 ℃保温72 h后珠光体团簇横截面的SEM像
图3  Fe-1.29C-13.9Mn钢在650 ℃保温8 h后早期珠光体团簇EBSD测量结果
ColonyF/CF/AC/AF/WC or F/GCC/WC or C/GC
1Pitsch-Petch[14,15]UnreportedUnreportedUnreportedDiscontinuous
2Pitsch-Petch[14,15]Near K-S (I)Switched F-E[32]UnreportedDiscontinuous
3Isaichev[13]K-S[26]UnreportedNew-3[16]Discontinuous
表2  图3中珠光体内铁素体(F)、珠光体内渗碳体(C)、晶界渗碳体(GC)、魏氏渗碳体(WC)以及奥氏体基体(A)之间的晶体学位向关系
图4  Fe-1.29C-13.9Mn钢在650 ℃保温72 h后形核于魏氏渗碳体界面的珠光体团EBSD测量结果
图5  图4中WC、F和C及A所对应的极图
图6  Fe-1.29C-13.9Mn钢在650 ℃保温72 h后2个珠光体区域EBSD测量结果
ColonyF/CF/AC/AF/WC or F/GCC/WC or C/GC
IBagaryatsky[12]UnreportedUnreportedUnreportedDiscontinuous
IIPitsch-Petch[14,15]Near K-S[26]UnreportedUnreportedNear (10°)
IIINew-2[16]Near K-S[26]UnreportedUnreportedDiscontinuous
IVPitsch-Petch[14,15]Near K-S[26]UnreportedBagaryatsky[12]Discontinuous
VPitsch-Petch[14,15]Near K-S[26]UnreportedNew-3[16]Continuous
VIPitsch-Petch[14,15]Near K-S[26]F-E[30]Pitsch-Petch[14,15]Continuous
表3  图6中F、C、GC、WC以及A之间的晶体学位向关系
图7  图6中珠光体团簇内铁素体与左侧晶粒内奥氏体基体的极图
No.F/CF/WC or F/GCF/AC/WC or C/GCC/AWC/A or GC/A
1Pitsch-PetchUnreportedUnreportedDiscontinuousUnreportedF-E
2New-4UnreportedUnreportedDiscontinuousUnreportedF-E
3New-3/New-4Pitsch-PetchNear K-SDiscontinuousUnreportedF-E
4Pitsch-PetchUnreportedNear K-S10°UnreportedUnreported
5Pitsch-PetchUnreportedK-SDiscontinuousSwitched F-EPitsch
6IsaichevNew-3K-SDiscontinuousUnreportedF-E
7New-3-Near K-S-Unreported-
8BagaryatskyUnreportedUnreported10°UnreportedUnreported
8UnreportedIsaichevK-S10°UnreportedUnreported
8New-3New-3UnreportedDiscontinuousUnreportedUnreported
8BagaryatskyIsaichevK-SDiscontinuousUnreportedUnreported
9BagaryatskyUnreportedNear K-SDiscontinuousUnreportedPitsch
9Pitsch-PetchUnreportedNear K-SDiscontinuousUnreportedPitsch
9Pitsch-PetchUnreportedNear K-SDiscontinuousSwitched F-EPitsch
10Pitsch-PetchPitsch-PetchK-S (I)ContinuousUnreportedUnreported
11Pitsch-PetchPitsch-PetchK-S (I)ContinuousF-E (I)F-E (I)
12Pitsch-PetchBagaryatskyNear K-SDiscontinuousUnreportedUnreported
12New-3Pitsch-PetchNear K-S/K-S (I)UnreportedNew OR[39]
12Pitsch-PetchPitsch-PetchNear K-S (I)ContinuousNew OR[39]New OR[39]
13Bagaryatsky-K-S (I)-Pitsch (I)-
13BagaryatskyBagaryatskyNear K-S (I)ContinuousPitsch (I)Pitsch (I)
13Pitsch-PetchPitsch-PetchNear K-SContinuousPitsch (I)Pitsch (I)
13New-3New-3Near K-S (I)ContinuousF-E (I)F-E (I)
13New-3New-3UnreportedContinuousPitsch (I)Pitsch (I)
14UnreportedUnreportedK-SContinuousUnreportedUnreported
14Pitsch-PetchPitsch-PetchUnreportedDiscontinuousUnreportedF-E (I)
14Pitsch-PetchPitsch-PetchNear K-SDiscontinuousUnreportedF-E (I)
表4  先共析渗碳体界面形核珠光体内铁素体片层、珠光体内渗碳体片层、先共析渗碳体以及奥氏体基体间不同的位向关系EBSD测量结果
图8  Fe-1.29C-13.9Mn钢在650 ℃保温72 h后垂直魏氏渗碳体片两侧Mn和Fe元素分布
1 Maya-Johnson S, Ramirez A J, Toro A. Fatigue crack growth rate of two pearlitic rail steels [J]. Eng. Fract. Mech., 2015, 138: 63
2 Fang F, Zhao Y F, Liu P P, et al. Deformation of cementite in cold drawn pearlitic steel wire [J]. Mater. Sci. Eng., 2014, A608: 11
3 Zhou L C, Hu X J, Ma C, et al. Effect of pearlitic lamella orientation on deformation of pearlite steel wire during cold drawing [J]. Acta Metall. Sin., 2015, 51: 897
3 周立初, 胡显军, 马 驰等. 珠光体层片取向对冷拔珠光体钢丝形变的影响 [J]. 金属学报, 2015, 51: 897
4 Hillert M. Decomposition of Austenite by Diffusional Processes [M]. New York: Interscience Publishers, 1962: 219
5 Aaronson H I, Enomoto M, Lee J K. Mechanisms of Diffusional Phase Transformations in Metals and Alloys [M]. Boca Raton: CRC Press, 2010: 576
6 Dippenaar R J, Honeycombe R W K. The crystallography and nucleation of pearlite [J]. Proc. Roy. Soc. London, 1973, 333A: 455
7 Walentek A, Seefeldt M, Verlinden B, et al. Electron backscatter diffraction on pearlite structures in steel [J]. J. Microsc., 2006, 224: 256
8 Nakada N, Koga N, Tsuchiyama T, et al. Crystallographic orientation rotation and internal stress in pearlite colony [J]. Scr. Mater., 2009, 61: 133
9 Guo N, Liu Q. Back-scattered electron imaging combined with EBSD technique for characterization of pearlitic steels [J]. J. Microsc., 2012, 246: 221
10 Durgaprasad A, Giri S, Lenka S, et al. Defining a relationship between pearlite morphology and ferrite crystallographic orientation [J]. Acta Mater., 2017, 129: 278
11 Samuel F H, Hussein A A. A crystallographic study of nucleation of pearlite [J]. Trans. Iron Steel Inst. Jpn., 1983, 23: 65
12 Bagaryatsky Y A. Veroyatnue mechanezm raspada martenseeta [J]. Dokl. Akad. Nauk SSSR, 1950, 73: 1161
13 Isaichev I V. Orientation of cementite in tempered carbon steel [J]. Zh. Tekhn. Fiz, 1947, 17: 835
14 Petch N J. The orientation relationships between cementite and α-iron [J]. Acta Crystallogr., 1953, 6: 96
15 Pitsch W. Der orientierungszusammenhang zwischen zementit und ferrit im perlit [J]. Acta Metall., 1962, 10: 79
16 Zhang M X, Kelly P M. Accurate orientation relationships between ferrite and cementite in pearlite [J]. Scr. Mater., 1997, 37: 2009
17 Zhang M X, Kelly P M. The morphology and formation mechanism of pearlite in steels [J]. Mater. Charact., 2009, 60: 545
18 Zhou D S, Shiflet G J. Ferrite: Cementite crystallography in pearlite [J]. Metall. Trans., 1992, 23A: 1259
19 Kim J, Kang K, Ryu S. Characterization of the misfit dislocations at the ferrite/cementite interface in pearlitic steel: An atomistic simulation study [J]. Int. J. Plast., 2016, 83: 302
20 Zhou Y T, Zheng S J, Jiang Y X, et al. Atomic structure of the Fe/Fe3C interface with the Isaichev orientation in pearlite [J]. Philos. Mag., 2017, 97: 2375
21 Guziewski M, Coleman S P, Weinberger C R. Atomistic investigation into the atomic structure and energetics of the ferrite-cementite interface: The bagaryatskii orientation [J]. Acta Mater., 2016, 119: 184
22 Mangan M A, Shiflet G J. The pitsch-petch orientation relationship in ferrous pearlite at small undercooling [J]. Metall. Mater. Trans., 1999, 30A: 2767
23 Guo Z H. Progress in the pearlitic transformation mechanism in steels [J]. Trans. Meter. Heat Treat., 2003, 24(3): 1
23 郭正洪. 钢中珠光体相变机制的研究进展 [J]. 材料热处理学报, 2003, 24(3): 1)
24 Yu Y N. Principles of Metallography [M]. 2nd Ed., Beijing: Metallurgical Industry Press, 2013: 839
24 余永宁. 金属学原理 [M]. 第2版, 北京: 冶金工业出版社, 2013: 839)
25 Samuel F H. A crystallographic study of pearlite growth in steels [J]. Trans. Iron Steel Inst. Jpn., 1983, 23: 403
26 Kurdjumow G, Sachs G. Über den mechanismus der stahlhärtung [J]. Z. für Phys., 1930, 64: 325
27 Nishiyama Z. X-ray investigation of the mechanism of the transformation from face-centered cubic lattice to body-centered cubic [J]. Sci. Rep. Tohoku Univ., 1934, 23: 637
28 Wassermann G. Üeber den mechanismus der α-γ umwandlung des eisens [J]. Mitt. K. -Wilh . -Inst. Eisenforsch, 1935, 17: 149
29 Pitsch W. Der orientierungszusammenhang zwischen zementit und austenit [J]. Acta Metall., 1962, 10: 897
30 Farooque M, Edmonds D V. The orientation relationships between Widmannstätten cementite and austenite [A]. Proceedings of the XII International Congress for Electron Microscopy [C]. San Francisco: San Francisco Press, 1990: 910
31 Thompson S W, Howell P R. The orientation relationship between intragranularly nucleated widmanstattin cementite and austenite in a commercial hypereutectold steel [J]. Scr. Metall., 1987, 21: 1353
32 Mangan M A, Kral M V, Spanos G. Correlation between the crystallography and morphology of proeutectoid Widmanstätten cementite precipitates [J]. Acta Mater., 1999, 47: 4263
33 Zilnyk K D, Almeida Junior D R, Sandim H R Z, et al. Misorientation distribution between martensite and austenite in Fe-31 wt%Ni-0.01 wt%C [J]. Acta Mater., 2018, 143: 227
34 Bain E C. The nature of martensite [J]. Trans. Am. Inst. Min. Metall. Eng., 1924, 70: 25
35 Greninger A B, Troiano A R. Crystallography of austenite decomposition [J]. Trans. Am. Inst. Min. Metall. Eng., 1940, 140: 307
36 King A D, Bell T. Crystallography of grain boundary proeutectoid ferrite [J]. Metall. Trans., 1975, 6A: 1419
37 Ø Grong , Kluken A O, Nylund H K, et al. Catalyst effects in heterogeneous nucleation of acicular ferrite [J]. Metall. Mater. Trans., 1995, 26A: 525
38 Spanos G, Kral M V. The proeutectoid cementite transformation in steels [J]. Int. Mater. Rev., 2009, 54: 19
39 Xu W S, Zhang W Z. A new orientation relationship between cementite and austenite and coexistence of pseudo-primary and secondary dislocations in the habit plane [J]. Philos. Mag., 2018, 98: 75
40 Darken L S, Fisher P M. Decomposition of Austenite by Diffusional Processes [M]. New York: Intersciences Publishers, 1962: 249
[1] 冯汉臣,闵学刚,魏大圣,周立初,崔世云,方峰. 低温回火对超大形变冷拔珠光体钢丝显微组织和力学性能的影响[J]. 金属学报, 2019, 55(5): 585-592.
[2] 郑成明, 田青超. 合金元素对顶头钢氧化行为的影响[J]. 金属学报, 2019, 55(4): 427-435.
[3] 陈星晨, 王杰, 陈德任, 钟舜聪, 王向峰. Na对于Al早期大气腐蚀的影响[J]. 金属学报, 2019, 55(4): 529-536.
[4] 曹丽华, 陈胤伯, 史起源, 远杰, 刘志权. 合金元素对中温Sn-Ag-Cu焊料互连组织及剪切强度的影响[J]. 金属学报, 2019, 55(12): 1606-1614.
[5] 金辰日, 杨素媛, 邓学元, 王扬卫, 程兴旺. 纳米晶化对锆基非晶合金动态压缩性能的影响[J]. 金属学报, 2019, 55(12): 1561-1568.
[6] 王宝刚, 易红亮, 王国栋, 骆智超, 黄明欣. 原位生成铁基复合材料中TiB2的三维形貌重构[J]. 金属学报, 2019, 55(1): 133-140.
[7] 鲍思前, 刘兵兵, 赵刚, 徐洋, 柯珊珊, 胡晓, 刘磊. Hi-B钢二次再结晶退火中异常长大Goss取向晶粒的三维形貌表征[J]. 金属学报, 2018, 54(6): 877-885.
[8] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
[9] 季培蓓, 周立初, 周雪峰, 方峰, 蒋建清. 冷拉拔珠光体钢丝的力学性能各向异性研究[J]. 金属学报, 2018, 54(4): 494-500.
[10] 武慧东, 宫本吾郎, 杨志刚, 张弛, 陈浩, 古原忠. Fe-1.5(3.0)%Si-0.4%C合金贝氏体不完全转变现象及伴随的渗碳体析出[J]. 金属学报, 2018, 54(3): 367-376.
[11] 马秀良, 胡肖兵. 高温合金中硼化物精细结构的高空间分辨电子显微学研究[J]. 金属学报, 2018, 54(11): 1503-1524.
[12] 韦昭召, 马骁, 张新平. NiTi合金B2-B19′马氏体相变晶体学的拓扑模拟研究[J]. 金属学报, 2018, 54(10): 1461-1470.
[13] 李敏, 刘静, 姜庆伟. 退火温度对ARB-Cu室温拉伸断裂行为的影响[J]. 金属学报, 2017, 53(8): 1001-1010.
[14] 郭靖,郭汉杰,方克明,段生朝,石骁,杨文晟. 钢中第二相粒子形貌预报理论和检测方法[J]. 金属学报, 2017, 53(7): 789-796.
[15] 徐洋,鲍思前,赵刚,黄祥斌,黄儒胜,刘兵兵,宋娜娜. Hi-B钢二次再结晶退火初期不同取向晶粒的三维形貌表征[J]. 金属学报, 2017, 53(5): 539-548.