Please wait a minute...
金属学报  2015, Vol. 51 Issue (10): 1179-1190    DOI: 10.11900/0412.1961.2015.00380
  本期目录 | 过刊浏览 |
高温合金叶片单晶凝固技术的新发展
马德新1,2()
2 长寿命高温材料国家重点实验室, 德阳 618000
DEVELOPMENT OF SINGLE CRYSTAL SOLIDIFICA- TION TECHNOLOGY FOR PRODUCTION OF SUPERALLOY TURBINE BLADES
MA,Dexin,1,2()
1 Material R&D Center, Dongfang Turbine Co., LTD, Deyang 618000
2 State Key Laboratory of Long-Life High Temperature Materials, Deyang 618000
全文: PDF(7779 KB)   HTML
摘要: 

分析了高温合金叶片复杂部位的凝固过程, 提出了单晶组织的三维生长机制和精确制导的新理念. 通过展示一系列的新发明, 如导热体引晶技术、平行式加热和冷却定向凝固设备、对叶片不同部位分别进行定点冷却和定点加热的复合控制引晶技术、薄壳降升法制造单晶叶片技术等, 显示了高温合金叶片单晶凝固技术发展的新思路和新举措. 这些新理念的提出和新发明的实施, 将有助于高温合金单晶叶片这种高精产品的制造方式实现从粗放式到精细式的根本转变.

关键词 高温合金定向凝固单晶涡轮叶片    
Abstract

Based on the analysis of solidification processing in complex turbine blades, a new idea of 3-dimensional and precise control of single crystal (SC) growth was proposed. A series of new techniques were presented,exhibiting the new development in the production of SC blades of superalloys. The heat conductor (HC)technique was developed to minimize the hot barrier effect which hindered the lateral SC growth. This method promotes the successful transition of SC growth from the blade body into the platform extremity prior to the nucleation of stray grains. To achieve symmetric thermal conditions for solidifying the SC blades, the PHC (parallel heating and cooling) system has been employed. With this technique, both sides of a shell mold can be both symmetrically heated in the heating zone as well as cooled in the cooling zone. The negative shadow effect in the current Bridgman process and the related defects are hence removed. With the H&D (dipping and heaving) technique using thin shell, the main problems of the Bridgman process, such as the ineffective radiative heat exchange and the large thermal resistance in thick ceramic molds, can be effectively resolved. This technique enables the establishment of a high temperature gradient at solidification front. By combining targeted cooling and heating technique, a 3-dimensionalcontrol of SC growth in large components can be achieved.

Key wordssuperalloy    directional solidification    single crystal    turbine blade
    

引用本文:

马德新. 高温合金叶片单晶凝固技术的新发展[J]. 金属学报, 2015, 51(10): 1179-1190.
MA, Dexin. DEVELOPMENT OF SINGLE CRYSTAL SOLIDIFICA- TION TECHNOLOGY FOR PRODUCTION OF SUPERALLOY TURBINE BLADES. Acta Metall Sin, 2015, 51(10): 1179-1190.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2015.00380      或      https://www.ams.org.cn/CN/Y2015/V51/I10/1179

图1  涡轮叶片3种典型晶粒组织的形成原理
图2  典型叶片形状和缘板过冷顺序(C-B-A)及单晶凝固路径(A-B-C)示意图
图3  高温合金CMSX-6单晶叶片缘板横截面的枝晶组织
图4  一种低过冷能力合金的叶片缘板的宏观组织
图5  引晶条技术示意图和应用时引起的叶片中小角度晶界
图6  导热体技术原理、应用实例及效果对比
图7  用于重型燃机的空心单晶叶片铸件
图8  传统桶式Bridgman炉的俯视和侧视示意图
图9  新型平行式定向凝固炉的俯视和侧视示意图
图10  结合定点冷却和定点加热的复合控制引晶技术示意图
图11  薄壳降升法制取单晶叶片示意图
图12  空气中用薄壳降升法制取Al单晶叶片的实验、带残壳的叶片和腐蚀后的叶片单晶组织
图13  薄壳降升法与复合控制法结合示意图
图14  真空中用薄壳降升法制取高温合金单晶叶片的实验装置图、制备的CMSX-4单晶小叶片和单晶叶片横截面组织
[1] Versnyder F I, Shank M E. Mater Sci Eng, 1970; A6: 213
[2] Ericson J S, Owczarski W A, Curran P M. Met Prog, 1971; 109(3): 58
[3] Liu L. Foundry, 2012; 61: 1273 (刘 林. 铸造, 2012; 61: 1273)
[4] Fitzgerald T J, Singer R F, Krug P. Eur Pat, EP0775030, 1997
[5] Elliott A F, Tin S, King W T, Huang S C, Gigliotti M F X, Pollock T M. Metall Mater Trans, 2004; 35A: 3221
[6] Ma D, Wu Q, Bührig-Polaczek A. Adv Mater Res, 2011; 278: 417
[7] Meyerter V M, Dedecke D, Paul U, Sahm P R. In: Kissinger R D, Deye D J, Anton D L, Getel A D, Nathal M V, Pollock T M eds., Superalloys 1996, Warrendale: TMS, 1996: 471
[8] Napolitano R E, Schaefer R J. J Mater Sci, 2000; 35: 1641
[9] Napolitano R E, Black D R. J Mater Sci, 2004; 39: 7009
[10] Newell M, Devendra K, Jennings P A, D'Souza N. Mater Sci Eng, 2005; A412: 307
[11] D'Souza N, Newell M, Devendra K, Jennings P A, Ardakani M G, Shollock B A. Mater Sci Eng, 2005; A413-414: 567
[12] Giamei A F, Kear B H. Metall Trans, 1970; 1: 2185
[13] Copley S M, Giamei A F, Johnson S M, Hornbecker M F. Metall Trans, 1970; 1: 2193
[14] Ma D. Metall Mater Trans, 2004; 35B: 735
[15] Ma D. J Cryst Growth, 2004; 260: 580
[16] Ma D, Bührig-Polaczek A. German Patent, DE1020007014744, 2008
[17] Ma D, Sahm P R, Bührig-Polaczek A. Giesserei, 2009; 96: 124
[18] Ma D, Bührig-Polaczek A. Int J Mater Res, 2009; 100: 1145
[19] Ma D, Bührig-Polaczek A. Metall Mater Trans, 2009; 40B: 738
[20] Ma D, Bührig-Polaczek A. Int Foundry Res, 2010; 62: 32
[21] Kats L, Konter M. R?sler J, Lubenets V P. German Pat, DE19539770 A1, 1995
[22] Kats L, Konter M. R?sler J, Lubenets V P. US Pat, 5.921.310, 1995
[23] Konter M, Kats E, Hofmann N. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S L, Schirra J J eds., Superalloys 2000, Warrendale: TMS, 2000: 189
[24] Ma D, Wu Q, Bührig-Polaczek A. Mater Sci Eng, 2011; 27: 012037
[25] Ma D, Wu Q, Bührig-Polaczek A. Metall Mater Trans, 2012; 43B: 344
[26] Ma D, Bührig-Polaczek A. Metall Mater Trans, 2014; 45A: 1435
[27] Ma D, Lu H, Bührig-Polaczek A. Mater Sci Eng, 2011; 27: 012036
[28] Wang F, Ma D, Zhang J, Liu L, Hong J, Bogner S, Bührig-Polaczek A. J Cryst Growth, 2014; 389: 47
[1] 刘金来, 叶荔华, 周亦胄, 李金国, 孙晓峰. 一种单晶高温合金的弹性性能的各向异性[J]. 金属学报, 2020, 56(6): 855-862.
[2] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[3] 马德新,王富,徐维台,徐文梁,赵运兴. 高温合金单晶铸件中条纹晶的形成机制[J]. 金属学报, 2020, 56(3): 301-310.
[4] 赵旭,孙元,侯星宇,张洪宇,周亦胄,丁雨田. 取向偏差对镍基单晶高温合金钎焊接头组织与力学性能的影响[J]. 金属学报, 2020, 56(2): 171-181.
[5] 刘兴军, 陈悦超, 卢勇, 韩佳甲, 许伟伟, 郭毅慧, 于金鑫, 魏振帮, 王翠萍. 新型钴基高温合金多尺度设计的研究现状与展望[J]. 金属学报, 2020, 56(1): 1-20.
[6] 吴静,刘永长,李冲,伍宇婷,夏兴川,李会军. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展[J]. 金属学报, 2020, 56(1): 21-35.
[7] 江河,董建新,张麦仓,姚志浩,杨静. 服役条件下镍基高温合金应力松弛微观机制[J]. 金属学报, 2019, 55(9): 1211-1220.
[8] 张军,介子奇,黄太文,杨文超,刘林,傅恒志. 镍基铸造高温合金等轴晶凝固成形技术的研究和进展[J]. 金属学报, 2019, 55(9): 1145-1159.
[9] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[10] 杜金辉,吕旭东,董建新,孙文儒,毕中南,赵光普,邓群,崔传勇,马惠萍,张北江. 国内变形高温合金研制进展[J]. 金属学报, 2019, 55(9): 1115-1132.
[11] 毕中南,秦海龙,董志国,王相平,王鸣,刘永泉,杜金辉,张继. 高温合金盘锻件制备过程残余应力的演化规律及机制[J]. 金属学报, 2019, 55(9): 1160-1174.
[12] 胡斌,李树索,裴延玲,宫声凯,徐惠彬. <111>取向小角偏离对一种镍基单晶高温合金蠕变性能的影响[J]. 金属学报, 2019, 55(9): 1204-1210.
[13] 刘杨,王磊,宋秀,梁涛沙. DD407/IN718高温合金异质焊接接头的组织及高温变形行为[J]. 金属学报, 2019, 55(9): 1221-1230.
[14] 张北江,黄烁,张文云,田强,陈石富. 变形高温合金盘材及其制备技术研究进展[J]. 金属学报, 2019, 55(9): 1095-1114.
[15] 张国庆,张义文,郑亮,彭子超. 航空发动机用粉末高温合金及制备技术研究进展[J]. 金属学报, 2019, 55(9): 1133-1144.