Please wait a minute...
金属学报  2018, Vol. 54 Issue (6): 851-858    DOI: 10.11900/0412.1961.2017.00379
  本期目录 | 过刊浏览 |
高碳钢连铸方坯拉坯方向偏析C元素分布的时间序列波动特征
侯自兵(), 徐瑞, 常毅, 曹江海, 文光华, 唐萍
重庆大学材料科学与工程学院 重庆 400044
Time-Series Fluctuation Characteristics of Segregation Carbon Element Distribution Along Casting Direction in High Carbon Continuous Casting Billet
Zibing HOU(), Rui XU, Yi CHANG, Jianghai CAO, Guanghua WEN, Ping TANG
College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
引用本文:

侯自兵, 徐瑞, 常毅, 曹江海, 文光华, 唐萍. 高碳钢连铸方坯拉坯方向偏析C元素分布的时间序列波动特征[J]. 金属学报, 2018, 54(6): 851-858.
Zibing HOU, Rui XU, Yi CHANG, Jianghai CAO, Guanghua WEN, Ping TANG. Time-Series Fluctuation Characteristics of Segregation Carbon Element Distribution Along Casting Direction in High Carbon Continuous Casting Billet[J]. Acta Metall Sin, 2018, 54(6): 851-858.

全文: PDF(2135 KB)   HTML
摘要: 

引入时间序列自回归移动平均模型法,从固有周期和阻尼率2个方面对高碳钢连铸方坯拉坯方向上偏析C元素含量分布的波动特征进行定量化分析。结果表明,固有周期和阻尼率可以定量描述C元素时间序列的固有波动特征(周期和极值)。强冷使柱状晶区C元素时间序列的平均固有周期和平均阻尼率均变小,对应波动程度增加,则偏析程度增大;同时使等轴晶区C元素时间序列的平均固有周期和平均阻尼率均变大,对应波动程度降低,则偏析程度降低。柱状晶区的周期和阻尼率分别主要受枝晶间距和温度梯度影响,而等轴晶区的周期和阻尼率分别主要受凝固过程液相流动(V形偏析)和局部冷却速率影响。本工作能为连铸坯拉坯方向元素分布均匀性的精细控制以及类似质量波动问题的定量分析提供新的理论参考。

关键词 偏析高碳钢连铸波动特征拉坯方向时间序列    
Abstract

High carbon steel is prone to produce macroscopic/semi-macroscopic segregation, and C segregation along casting direction will have a serious impact on the quality of billet. Based on qualitative analysis (macroscopic quality rating and elemental macro content analysis) and relatively simple quantitative analysis (segregation index, mean square error), the existing technologies have judged the degree of segregation of billet in different levels, but with requirement of stricter quality stability standard, especially for the typical raw material of high-level rod-wire steel (e.g. 70 high carbon steel), it is very necessary to introduce a new method to measure the fluctuation characteristics more effectively. In this work, the ARMA (auto regressive moving average) model in the time series is firstly used to study the segregation degree of high carbon steel billet at different positions from the aspects of inherent period and damping rate in terms of the fluctuation characteristics (period and extremum) of C element along the casting direction. The size of the billet is 170 mm×170 mm and the sampling location is in the center longitudinal plane of the billet. The experiment is conducted by considering the effect of cooling strength (conventional cooling and strong cooling) on the fluctuation characteristics. Firstly, it is shown that the inherent period and the damping rate can quantitatively describe the inherent characteristics (periodic and extreme characteristics) of the C element along the casting direction. Secondly, strong cooling makes the average inherent period and the average damping rate of C element time series in the columnar grain region smaller, thus increasing the fluctuation degree and the segregation degree. However, strong cooling makes the average inherent period and the average damping rate of the C element time series in the equiaxed grain region larger, thus decreasing the fluctuation degree and the segregation degree. Finally, the period and the damping rate of the columnar grain region are respectively affected by the dendritic spacing and the temperature gradient, and the period and the damping rate of the equiaxed grain zone are respectively affected by the liquid flow in the solidification process (V-shaped segregation) and local cooling rate. By this research, a new theoretical basis may be supplied for delicacy control of element segregation and related quality fluctuation phenomenon.

Key wordssegregation    high carbon steel    continuous casting    fluctuation characteristics    casting direction    time series
收稿日期: 2017-09-08     
ZTFLH:  TG113.12  
基金资助:国家自然科学基金项目No.51504047和中央高校基本科研业务费项目No.CDJPY14130001
作者简介:

作者简介 侯自兵,男,1985年生,副教授,博士

图1  铸坯中心纵断面取样位置示意图
图2  70钢连铸方坯拉坯方向上的C元素含量分布周期性与极值示意图(试样2的60 mm位置)
图3  固有周期T和阻尼率ξ与波动特征的关系
图4  不同试样不同位置的C元素时间序列
图5  C元素时间序列平均固有周期图
图6  C元素时间序列平均阻尼率图
图7  常规冷却和强冷下柱状晶区凝固组织变化示意图
图8  试样1和试样2中心纵断面宏观组织形貌
Distance to left border / mm Sample 1 Sample 2
30 172.46 160.14
40 209.55 200.92
60 225.04 221.81
表1  试样1和试样2不同晶区的二次枝晶间距平均值d2
[1] Weng Y Q.China's economic development on the demand for some high-end steel products [A]. The Chinese Society for Metals. Ninth China Iron and Steel Annual Conference [C]. Beijing: Metallurgical Industry Press, 2013: 12(翁宇庆. 我国经济发展对部分高端钢铁品种的需求 [A]. 中国金属学会. 第九届中国钢铁年会论文集[C]. 北京:冶金工业出版社, 2013: 12)
[2] Choudhary S K, Ganguly S.Morphology and segregation in continuously cast high carbon steel billets[J]. ISIJ Int., 2007, 47: 1759
[3] Li Y X, Liao M, Li B C, et al.High-carbon steel production process and quality analysis[J]. Steelmaking, 2009, 25(4): 1(李永祥, 廖明, 李碧春等. 高碳钢生产工艺及质量分析[J]. 炼钢, 2009, 25(4): 1)
[4] Flemings M C.Our understanding of macrosegregation: Past and present[J]. ISIJ Int., 2000, 40: 833
[5] Lesoult G. Macrosegregation in steel strands and ingots:Characterisation,formation and consequences [J]. Mater. Sci. Eng., 2005, A413-414: 19
[6] Cai Z Z, Zhu M Y.Microsegregation of solute elements in solidifying mushy zone of steel and its effect on longitudinal surface cracks of continuous casting strand[J]. Acta Metall. Sin., 2009, 45: 949(蔡兆镇, 朱苗勇. 钢凝固两相区溶质元素的微观偏析及其对连铸坯表面纵裂纹的影响[J]. 金属学报, 2009, 45: 949)
[7] Han Z Q, Cai K K.Study on a mathematical model of microsegregation in continuously cast slab[J]. Acta Metall. Sin., 2000, 36: 869(韩志强, 蔡开科. 连铸坯中微观偏析的模型研究[J]. 金属学报, 2000, 36: 869)
[8] Ludlow V, Normanton A, Anderson A, et al.Strategy to minimise central segregation in high carbon steel grades during billet casting[J]. Ironmaking Steelmaking, 2005, 32: 68
[9] Tacke K H.Cavity sequences in continuously cast billets: Part II. Stochastic models[J]. Metall. Mater. Trans., 1999, 30B: 763
[10] Choudhary S K, Ganguly S.Morphology and segregation in continuously cast high carbon steel billets[J]. ISIJ Int., 2007, 47: 1759
[11] Chang Y, Hou Z B, Wang W, et al.Characteristics and mechanism of carbon element and manganese element distribution along casting direction in high-carbon billet[J]. Iron Steel, 2016, 51(11): 43(常毅, 侯自兵, 王伟等. 高碳钢方坯碳锰元素纵向分布及机理[J]. 钢铁, 2016, 51(11): 43)
[12] Yuan X F, Sun S Q.Introduce the standard figure of GB/T 1979-2001 structure steel macrostructure and defect[J]. Metall. Standard. Qual., 2002, 40(6): 8(袁辛芳, 孙时秋. GB/T 1979-2001 结构钢低倍组织缺陷评级图介绍[J]. 冶金标准化与质量, 2002, 40(6): 8)
[13] Cai K K.Quality Control of Continuously Cast Steel [M]. Beijing: Metallurgical Industry Press, 2010: 283(蔡开科. 连铸坯质量控制 [M]. 北京: 冶金工业出版, 2010: 283)
[14] Chen Y, Yang S B, Zhu M Y.Key technologies of internal quality control for continuously cast high-speed rail steel bloom[J]. Iron Steel, 2006, 41(12): 36(陈永, 杨素波, 朱苗勇. 高速轨用钢连铸坯内部质量控制的关键技术[J]. 钢铁, 2006, 41(12): 36)
[15] Li P, Wang L, Zhou Q F.Formation reasons and countermeasures of cementite network in the Center of 82B wire rods[J]. J. Iron Steel Res., 2014, 26(9): 33(李平, 王雷, 周青峰. 82B中心网状渗碳体产生原因及改善方法[J]. 钢铁研究学报, 2014, 26(9): 33)
[16] Box G E P, Jenkins G M, Reinsel G C. Time Series Analysis: Forecasting and Control[M]. 4th Ed., Hoboken: Wiley, 2008: 2
[17] Hou Z B, Cheng G G, Wu C C, et al.Time-series analysis technologies applied to the study of carbon element distribution along casting direction in continuous-casting billet[J]. Metall. Mater. Trans., 2012, 43B: 1517
[18] Hou Z B, Wen G H, Tang P, et al.Periodicity of carbon element distribution along casting direction in continuous-casting billet by using singular spectrum analysis[J]. Metall. Mater. Trans., 2014, 45B: 1817
[19] Wang H Z.Original position statistic distribution analysis (original position analysis): A new analytical method in research and quality evaluation of materials[J]. Sci. China, 2003, 46B: 119
[20] Yang S Z, Wu Y, Xuan J P, et al.Time Series Analysis in Engineering Application (Volume II) [M]. 2nd Ed., Wuhan: Huazhong University of Science and Technology Press, 2007: 1(杨叔子, 吴雅, 轩建平等. 时间序列分析的工程应用(下册) [M]. 第2版. 武汉: 华中科技大学出版社, 2007: 1)
[21] Trivedi R, Kurz W.Dendritic growth[J]. Int. Mater. Rev., 1994, 39: 49
[22] Ganguly S, Choudhary S K.Quantification of the solidification microstructure in continuously-cast high-carbon steel billets[J]. Metall. Mater. Trans., 2009, 40B: 397
[23] Feng J, Chen W Q.Influential factors of primary dendritic arm spacing in high-carbon steel billets[J]. J. Univ. Sci. Technol. Beijing, 2007, 29(1): 25(冯军, 陈伟庆. 高碳钢小方坯的一次枝晶臂间距的影响因素[J]. 北京科技大学学报, 2007, 29(1): 25)
[24] Hu Z Y, Chen X H, Tang P,et al.Effect of superheat on carbon segregation in continuous casting billet of cord steel[J]. Continu. Cast., 2017, (5): 12(胡志勇, 陈兴华,唐萍等. 过热度对帘线钢连铸方坯碳偏析的影响[J]. 连铸, 2017, (5): 12)
[25] Tomono H, Hitomi Y, Ura S.Mechanism of formation of the V-shaped segregation in the large section continuous cast bloom[J]. Trans. Iron Steel Inst Japan, 1984, 24: 917
[26] Lai C B, Xin B, Chen W Q, et al.Effect of secondary dendritic arm spacing on center carbon segregation of slab[J]. Steelmaking, 2009, 25(4): 42(赖朝彬, 辛博, 陈伟庆等. 连铸板坯二次枝晶臂间距对中心碳偏析的影响[J]. 炼钢, 2009, 25(4): 42)
[27] Tian L, Jiang H.The Effect of solidification structures on central segregation of slabs[J]. Continu. Cast., 2010, (1): 26(田陆, 江浩. 凝固组织对连铸板坯中心偏析的影响[J]. 连铸, 2010, (1): 26)
[28] Xu X J, Deng A Y, Wang E G, et al.Effect mechanism of high frequency electromagnetic field on the surface quality and equiaxed crystal ratio of 15CrMo Billet[J]. Acta Metall. Sin., 2009, 45: 1330(许秀杰, 邓安元, 王恩刚, 等. 高频电磁场对15CrMo连铸坯表面质量和等轴晶率的影响机理[J]. 金属学报, 2009, 45: 1330)
[1] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[3] 张利民, 李宁, 朱龙飞, 殷鹏飞, 王建元, 吴宏景. 交流电脉冲对过共晶Al-Si合金中初生Si相偏析的作用机制[J]. 金属学报, 2023, 59(12): 1624-1632.
[4] 陈学双, 黄兴民, 刘俊杰, 吕超, 张娟. 一种含富锰偏析带的热轧临界退火中锰钢的组织调控及强化机制[J]. 金属学报, 2023, 59(11): 1448-1456.
[5] 彭治强, 柳前, 郭东伟, 曾子航, 曹江海, 侯自兵. 基于大数据挖掘的连铸结晶器传热独立变化规律[J]. 金属学报, 2023, 59(10): 1389-1400.
[6] 郭东伟, 郭坤辉, 张福利, 张飞, 曹江海, 侯自兵. 基于二次枝晶间距变化特征的连铸方坯CET位置判断新方法[J]. 金属学报, 2022, 58(6): 827-836.
[7] 李民, 李昊泽, 王继杰, 马颖澈, 刘奎. 稀土Ce对薄带连铸无取向6.5%Si钢组织、高温拉伸性能和断裂模式的影响[J]. 金属学报, 2022, 58(5): 637-648.
[8] 李亚敏, 张瑶瑶, 赵旺, 周生睿, 刘洪军. CuInconel 718合金Nb偏析影响机理的第一性原理研究[J]. 金属学报, 2022, 58(2): 241-249.
[9] 刘中秋, 李宝宽, 肖丽俊, 干勇. 连铸结晶器内高温熔体多相流模型化研究进展[J]. 金属学报, 2022, 58(10): 1236-1252.
[10] 冯苗苗, 张红伟, 邵景霞, 李铁, 雷洪, 王强. 耦合热力学相变路径预测Fe-C包晶合金宏观偏析[J]. 金属学报, 2021, 57(8): 1057-1072.
[11] 郭中傲, 彭治强, 柳前, 侯自兵. 高碳钢连铸坯大区域C元素分布不均匀度[J]. 金属学报, 2021, 57(12): 1595-1606.
[12] 唐海燕, 刘锦文, 王凯民, 肖红, 李爱武, 张家泉. 连铸中间包加热技术及其冶金功能研究进展[J]. 金属学报, 2021, 57(10): 1229-1245.
[13] 张壮, 李海洋, 周蕾, 刘华松, 唐海燕, 张家泉. 齿轮钢铸态点状偏析及其在热轧棒材中的演变[J]. 金属学报, 2021, 57(10): 1281-1290.
[14] 蔡来强, 王旭东, 姚曼, 刘宇. 连铸圆坯非均匀传热/凝固行为的无网格计算方法[J]. 金属学报, 2020, 56(8): 1165-1174.
[15] 张勇, 李鑫旭, 韦康, 韦建环, 王涛, 贾崇林, 李钊, 马宗青. 三联熔炼GH4169合金大规格铸锭与棒材元素偏析行为[J]. 金属学报, 2020, 56(8): 1123-1132.