Please wait a minute...
金属学报  2017, Vol. 53 Issue (12): 1603-1610    DOI: 10.11900/0412.1961.2017.00110
  本期目录 | 过刊浏览 |
CM247LC单晶高温合金中MC碳化物对γ/γ′共晶反应的影响
马德新1, 王富2, 温序晖3, 孙德建4, 刘林4()
1 深圳万泽中南研究院 深圳 518045
2 Foundry Institute, RWTH Aachen University, Aachen 52072, Germany
3 东方电气集团中央研究院能量转换技术研发中心 成都 611731
4 西北工业大学凝固技术国家重点实验室 西安 710072
Influence of MC Carbides on the Formation of γ/γ′ Eutectics in Single Crystal Superalloy CM247LC
Dexin MA1, Fu WANG2, Xuhui WEN3, Dejian SUN4, Lin LIU4()
1 Wedge Central South Research Institute, Shenzhen 518045, China
2 Foundry Institute, RWTH Aachen University, Aachen 52072, Germany
3 Energy Conversion R&D Center, Central Academy, Dongfang Electric Co., Chengdu 611731, China
4 State Key Laborotory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
引用本文:

马德新, 王富, 温序晖, 孙德建, 刘林. CM247LC单晶高温合金中MC碳化物对γ/γ′共晶反应的影响[J]. 金属学报, 2017, 53(12): 1603-1610.
Dexin MA, Fu WANG, Xuhui WEN, Dejian SUN, Lin LIU. Influence of MC Carbides on the Formation of γ/γ′ Eutectics in Single Crystal Superalloy CM247LC[J]. Acta Metall Sin, 2017, 53(12): 1603-1610.

全文: PDF(4776 KB)   HTML
摘要: 

在0.2 mm/min的抽拉速率下对高温合金CM247LC进行了单晶定向凝固实验,观察分析了水淬的糊状区内的组织。结果显示,合金凝固时首先形成γ枝晶,然后初生MC碳化物在γ枝晶尖端稍后的位置开始形成,γ/γ′共晶在凝固最后阶段析出。值得注意的是,γ/γ′共晶反应是以化学成分和晶体结构都完全不同的MC碳化物作为异质形核核心,而不是依附在形核条件更好的γ相上。检测结果表明,在MC碳化物基底上形成的γ/γ′共晶体具有杂乱的晶体取向,与单晶γ相基体的取向完全不同,说明宏观上为单晶体的高温合金铸件实际上可能含有许多微小杂晶晶粒,使得铸件的单晶性受到影响。

关键词 高温合金单晶定向凝固MC碳化物γ/γ′共晶    
Abstract

The structure formation of superalloys is very complicated because of their multicomponent composition and multiphase transition processing. Duo to the limitation of some pre-conditions, the structure formation can not be accurately determined by thermodynamic calculation method. Knowledge about the structure is critical for the design of the following heat treatment process. In this work, a single crystal (SC) sample of superalloy CM247LC was directional solidified in a labor Bridgman furnace with a pulling rate of 0.2 mm/min and then water quenched, to investigate the solidification sequence including MC carbide and γ/γ′-eutectic. It was observed that the γ-phase is firstly formed in the form of dendrites; it is then followed by the homogeneously precipitation of MC carbides from the liquid behind dendrite tips. Near the end of solidification the interdendritic residual liquid transits into γ/γ′-eutectics. It is interesting to found that the γ/γ′ eutectics do not nucleate on the existing γ -phase, but preferably on the MC carbides which have completely different chemical composition and crystal structure. The result of EBSD examination indicates that the γ/γ′ eutectics formed on the MC substrates have random crystal orientations compared to the SC γ -matrix, exhibiting the misoriented multi-crystal microstructure in the so called "single crystal" superalloy casting.

Key wordssuperalloy    single crystal    directional solidification    MC carbide    γ/γ′ eutectic
收稿日期: 2017-04-05     
ZTFLH:  TG21  
基金资助:国家自然科学基金项目Nos.51331005、51690163和51631008,国家重点研发计划项目 No.2016YFB0701405,深圳市科技创新委员会项目No.JSGG20150731142227736
作者简介:

作者简介 马德新,男,1955年生,教授

图1  水淬试棒上部的纵截面和糊状区不同深度的横截面
图2  糊状区中不同深度横截面的MC碳化物形貌
图3  水淬糊状区中γ /γ'共晶以MC碳化物为基底的形核和长大过程
Element Average C0i ki =CMCi/C0i MC element
C 3.38 0.09 37.56 Yes
Al 0.12 5.49 0.02 No
Ti 7.17 0.74 9.69 Yes
Cr 0.33 8.03 0.04 No
Mo 0.63 0.50 1.26 N.D.
Co 0.28 9.41 0.03 No
W 6.43 9.87 0.65 N.D.
Ta 58.60 2.90 20.20 Yes
Hf 21.10 1.36 15.52 Yes
Ni 1.95 61.61 0.03 No
表1  初生MC碳化物中各元素i的平均含量(CMCi)及与母合金相应成分(C0i)的比值ki
图4  水淬糊状区横截面的OM像和EBSD取向成像图
图5  水淬糊状区横截面的SEM像和EBSD取向成像图
图6  糊状区内凝固过程示意图
图7  CM247LC铸件的铸态组织
[1] Yukawa N, Murata Y, Noda T.Analysis of solidification behavior and alloy design of a nickel-base superalloy, IN-100 [A]. Superalloys 1984[C]. Warrendale: TMS, 1984: 83
[2] He L Z, Zheng Q, Sun X F, et al.Effect of carbides on the creep properties of a Ni-base superalloy M963[J]. Mater. Sci. Eng., 2005, A397: 297
[3] Yang J X, Zheng Q, Sun X F, et al.Topologically close-packed phase precipitation in a nickel-base superalloy during thermal exposure[J]. Mater. Sci. Eng., 2007, A465: 100
[4] Harris K, Erickson G L. Single crystal (single grain) alloy [P]. US Pat, 4582548, 1986
[5] Ross E W, Wukusick C S, King W T. Nickel-based superalloys for producing single crystal articles having improved tolerance to low angle grain boundaries [P]. US Pat, 5399313, 1995
[6] Wasson A J, Fuchs G E.Microstructural evolution of a carbon modified single crystal Ni-base superalloy[J]. Mater. Charact., 2012, 74: 11
[7] Mihalisin J R, Corrigan J, Baker R J, et al. Clean single crystal nickel base superalloy [P]. US Pat, 5549765, 1996
[8] Tin S, Pollock T M, Murphy W.Stabilization of thermosolutal convective instabilities in Ni-based single-crystal superalloys: Carbon additions and freckle formation[J]. Metall. Mater. Trans., 2001, 32A: 1743
[9] Cutler E R, Wasson A J, Fuch G E.Effect of minor alloying additions on the solidification of single-crystal Ni-base superalloys[J]. J. Cryst. Growth, 2009, 311: 3753
[10] Tin S, Pollock T M, King W T.Carbon additions and grain defect formation in high refractory nickel-base single crystal superalloy [A]. Superalloys 2000[C]. Warrendale: TMS, 2000: 201
[11] Tin S, Pollock T M.Stabilization of thermosolutal convective instabilities in Ni-based single-crystal superalloys: Carbide precipitation and Rayleigh numbers[J]. Metall. Mater. Trans., 2003, 34A: 1953
[12] Liu L, Fu H Z, Shi Z X.Relationship between primary morphology and crystal structure of carbides growing in superalloys[J]. Acta Metall. Sin.(Engl. Ed.), 1990, 3: 46
[13] Liu L, Sommer F, Fu H Z.Effect of solidification conditions on MC carbides in a Nickel-base superalloy in IN 738-LC[J]. Scr. Metall. Mater., 1994, 30: 587
[14] Chen J, Lee J H, Jo C Y, et al.MC carbide formation in directionally solidified MAR-M247 LC superalloy[J]. Mater. Sci. Eng., 1998, A247: 113
[15] Sun W R, Lee J H, Seo S M, et al.The eutectic characteristic of MC-type carbide precipitation in a DS nickel-base superalloy[J]. Mater. Sci. Eng., 1999, A271: 143
[16] Chen J, Huang B Y, Lee J H, et al.Carbide formation process in directionally solidified MAR-M247 LC superalloy[J]. J. Mater. Sci. Technol., 1999, 15: 48
[17] Huang H E, Koo C H.Characteristics and mechanical properties of polycrystalline CM 247 LC superalloy casting[J]. Mater. Trans., 2004, 45: 562
[18] Szczotok A, Rodak K.Microstructural studies of carbides in MAR-M247 nickel-based superalloy[J]. IOP Conf. Ser.: Mater. Sci. Eng., 2012, 35: 012006
[19] D'Souza N, Dong H B. Solidification path in third-generation Ni-based superalloys, with an emphasis on last stage solidification[J]. Scr. Mater., 2007, 56: 41
[20] Liang Y J, Li J, Li A, et al.Solidification path of single-crystal nickel-base superalloys with minor carbon additions under laser rapid directional solidification conditions[J]. Scr. Mater., 2017, 127: 58
[21] Durand-Charre M, translated by Davidson J H. The Microstructure of Superalloys[M]. Amsterdam: Gordon and Breach Science Publishers, 1997: 30
[22] Zou J, Wang H P, Doherty R, et al.Solidification behavior and microstructure formation in a cast Nickel based superalloy: Experiment and modeling [A]. Superalloys 1992[C]. Warrendale: TMS, 1992: 165
[23] D'Souza N D, Dong H B. An analysis of solidification path in the Ni-base superalloy, CMSX10K [A]. Superalloys 2008[C]. Warrendale: TMS, 2008: 261
[24] Zou J, Wang H P, Doherty R, et al.Solidification behavior and microstructure formation in a cast nickel based superalloy: Experiment and modeling [A]. Superalloys 1992[C]. Warrendale: TMS, 1992: 165
[25] Warnken N, Ma D, Mathes M, et al. Investigation of eutectic island formation in SX superalloys [J]. Mater. Sci. Eng., 2005, A413-414: 267
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[5] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[6] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[7] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[8] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[9] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[10] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[11] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[12] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[13] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[14] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[15] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.