Please wait a minute...
金属学报  1999, Vol. 35 Issue (11): 1211-1213     
  论文 本期目录 | 过刊浏览 |
一种提高高强化高温合金热加工性能的新方法
龙正东 庄景云 邓波 仲增墉
钢铁研究总院高温材料所;北京 100081
引用本文:

龙正东; 庄景云; 邓波; 仲增墉 . 一种提高高强化高温合金热加工性能的新方法[J]. 金属学报, 1999, 35(11): 1211-1213 .

全文: PDF(308 KB)  
摘要: 提出了一种基于组织调整来改善钢锭热加工性能的新途径, 该方法采用了传统截热不同的新的处理工艺γ相粗化, 粗化的γ相改善了它与基体的界面状态, 发迹了强化元素的分配, 降低了热变形抗力, 提高了变形塑性.
关键词 高温合金热加工性能合金化微观组织    
Key words
收稿日期: 1999-07-20     
ZTFLH:  TG132.32  
[1] Goulette M J. In: Kissinger R D, Deye D J eds, Soperalloys1996, TMS Pittsburg, PA, 1996: 3
[2] Zao J. Superalloy. Dalian: Dalian Science & TechnologyUniversity Press, 1992: 18(赵杰.高温合金.大连:大连理工大学出版社,1992:18)
[3] Yie J. Ni-Based Superalloys of American. Beijing: SciencePress, 1987: 586(冶军.美国镍基高温合金.北京:科学出版社,1987:586)
[4] Furr D. Adv Mater Proc, 1999; 3: 33(
[1] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[2] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[6] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[7] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[8] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[9] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[10] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[11] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[12] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[13] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[14] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[15] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.