Please wait a minute...
金属学报  2017, Vol. 53 Issue (4): 465-471    DOI: 10.11900/0412.1961.2016.00259
  本期目录 | 过刊浏览 |
Cu对AlN/TiN-Cu复合多层膜微观结构和力学性能的影响
刘进1,劳远侠1,汪渊1,2()
1 四川大学原子核科学技术研究所辐射物理及技术教育部重点实验室 成都 610065
2 中国科学院金属研究所中国科学院核用材料与安全评价重点实验室 沈阳 110016
Effects of Cu on Microstructure and Mechanical Properties of AlN/TiN-Cu Nanocomposite Multilayers
Jin LIU1,Yuanxia LAO1,Yuan WANG1,2()
1 Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610065, China
2 Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

刘进,劳远侠,汪渊. Cu对AlN/TiN-Cu复合多层膜微观结构和力学性能的影响[J]. 金属学报, 2017, 53(4): 465-471.
Jin LIU, Yuanxia LAO, Yuan WANG. Effects of Cu on Microstructure and Mechanical Properties of AlN/TiN-Cu Nanocomposite Multilayers[J]. Acta Metall Sin, 2017, 53(4): 465-471.

全文: PDF(6864 KB)   HTML
  
摘要: 

采用多弧离子镀膜设备制备了掺杂Cu的AlN/TiN-Cu纳米复合多层膜,利用FESEM、HRTEM和XRD分别表征了薄膜的微观结构和相组成,用压入法和划痕法确定了薄膜的硬度和膜/基结合力,研究了Cu对AlN/TiN-Cu复合多层膜微观结构和力学性能的影响。结果表明,Cu的掺杂对薄膜的微观结构有较大的影响。薄膜的平均晶粒尺寸随Cu含量的增加而逐渐减小。掺入少量Cu后,薄膜的硬度均有提高,但不同种类的薄膜有不同的临界载荷变化趋势,纳米复合单层薄膜的临界载荷有所增大,而纳米复合多层膜的临界载荷反而有所减小。

关键词 多弧离子镀纳米复合多层膜硬度临界载荷    
Abstract

The nanocomposite multilayers, composed by typical nitride ceramic (AlN and TiN), have been developed for variety of application for its excellent properties such as structure stability and high hardness as well as low friction coefficient. By adding an appropriate amount of soft metal, the mechanical performance of the film can be significantly improved including intensity, tenacity and friction coefficient, but microstructure and hardness will be greatly influenced. In this work, AlN/TiN-Cu nanocomposite multilayers combining AlN with composite layer formed by adding soft phase metal Cu into hard TiN phase were prepared by multi-arc ion plating equipment. The microstructure and phase composition of the films were characterized by FESEM, HRTEM and XRD respectively. The hardness and the bond strength of the films were detected by Vickers hardness test and scratch method. The effects of Cu on microstructure and mechanical properties of AlN/TiN-Cu nanocomposite multilayers were investigated. The results show that the microstructure of the films was affected by the doping of Cu. The average grain size of the films reduced with the increase of Cu content. The hardness of films increased after the dropping of Cu. However, the critical loads of the films with different types have different changing trends. The critical load of the nanocomposite monolayers increased while that of the nanocomposite multilayers decreased.

Key wordsmulti-arc ion plating    nanocomposite multilayer    hardness    critical load
收稿日期: 2016-06-27     
基金资助:国家自然科学基金项目Nos.51171124和11505121,国家国际科技合作专项项目No.2014DFR50710,四川省科技支撑计划项目No.2014GZ0004及中科院核用材料与安全评价重点实验室开放课题项目No.2017NMSAKF02
Sample Number N Ti Al Cu
(Ti, Al)N-Cu 1# 18.60 68.27 13.13 0
nanocomposite 2# 34.08 52.15 10.06 3.72
monolayer 3# 30.75 43.77 18.25 7.23
4# 28.49 41.67 16.51 13.32
AlN/TiN-Cu 5# 27.75 54.78 17.47 0
nanocomposite 6# 23.06 64.47 9.98 2.49
multilayer 7# 36.27 37.98 20.75 5.03
8# 44.03 27.73 20.03 8.21
表1  样品编号及成分
图1  典型薄膜断口的SEM像
图2  所有样品的XRD谱
图3  3#和7#典型薄膜的HRTEM像和SAED谱及7#薄膜放大的HRTEM像和Fourier变换像
图4  Cu含量与晶粒尺寸和硬度的关系
图4  Cu含量与晶粒尺寸和硬度的关系
图5  典型掺Cu样品划痕形貌的SEM像
[1] Zhang H P, Tang W M, Chang Z, et al.Research status and application of superhard tool material[J]. Aeronaut. Manuf. Technol., 2015, (6): 47
[1] (张慧萍, 唐文明, 常震等. 超硬刀具材料的研究现状及应用[J]. 航空制造技术, 2015, (6): 47)
[2] Zhang E G, Zhu Z, Zhang T B.Research progress and application of superhard nano-micron PVD coating technology in the cutting manufacturing area[J]. Surf. Technol., 2015, 44(4): 89
[2] (张而耕, 朱州, 张体波. 超硬纳微米PVD涂层技术在刀具领域的应用及研究进展[J]. 表面技术, 2015, 44(4): 89)
[3] Wang J T, Liu P, Li W, et al.Research progress of TiAlN hard coating[J]. Hot Work. Technol., 2010, 39(20): 104
[3] (王均涛, 刘平, 李伟等. TiAlN硬质涂层的研究进展 [J]. 热加工工艺, 2010, 39(20): 104)
[4] Musil J.Hard and superhard nanocomposite coatings[J]. Surf. Coat. Technol., 2000, 125: 322
[5] Ran C H, Jin Y D, Zhu W, et al.Study status on the impact of stress on structure and properties of films[J]. Mater. Rev., 2013, 27(5): 139
[5] (冉春华, 金义栋, 祝闻等. 应力对薄膜结构与性能影响的研究现状[J]. 材料导报, 2013, 27(5): 139)
[6] Chen K Y, Bielawski M.Interfacial fracture toughness of transition metal nitrides[J]. Surf. Coat. Technol., 2008, 203: 598
[7] Musil J, Vl?ek J.Magnetron sputtering of films with controlled texture and grain size[J]. Mater. Chem. Phys., 1998, 54: 116
[8] He J L, Setsuhara Y, Shimizu I, et al.Structure refinement and hardness enhancement of titanium nitride films by addition of copper[J]. Surf. Coat. Technol., 2001, 137: 38
[9] Olivera J C, Manaia A, Cavaleiro A.Hard amorphous Ti-Al-N coatings deposited by sputtering[J]. Thin Solid Films, 2008, 516: 5032
[10] Zhao Y H, Wang X Q, Xiao J Q, et al.Ti-Cu-N hard nanocompo-site films prepared by pulse biased arc ion plating[J]. Appl. Surf. Sci., 2011, 258: 370
[11] Zhang L, Ma G J, Lin G Q, et al.Synthesis of Cu doped TiN composite films deposited by pulsed bias arc ion plating[J]. Nucl. Instrum. Methods Phys. Res., 2014, 320B: 17
[12] Myung H S, Lee H M, Shaginyan L R, et al. Microstructure and mechanical properties of Cu doped TiN superhard nanocomposite coatings [J]. Surf. Coat. Technol., 2003, 163-164: 591
[13] Koehler J S.Attempt to design a strong solid[J]. Phys. Rev., 1970, 2B: 547
[14] Yang W M C, Tsakalakos T, Hilliard J E. Enhanced elastic modulus in composition-modulated gold-nickel and copper-palladium foils[J]. J. Appl. Phys., 1977, 48: 876
[15] Wong M S, Hsiao G Y, Yang S Y.Preparation and characterization of AlN/ZrN and AlN/TiN nanolaminate coatings [J]. Surf. Coat. Technol., 2000, 133-134: 160
[16] Madan A, Kim I W, Cheng S C, et al.Stabilization of cubic AlN in epitaxial AlN/TiN superlattices[J]. Phys. Rev. Lett., 1997, 78: 1743
[17] Wei Y Q, Li C W, Gong C Z, et al.Microstructure and mechanical properties of TiN/TiAlN multilayer coatings deposited by arc ion plating with separate targets[J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 1068
[18] Kawata K, Sugimura H, Takai O.Characterization of multilayer films of Ti-Al-O-C-N system prepared by pulsed d.c. plasma-enhanced chemical vapor deposition[J]. Thin Solid Films, 2001, 390: 64
[19] Leu M S, Lo S C, Wu J B, et al.Microstructure and physical pro-perties of arc ion plated TiAlN/Cu thin film[J]. Surf. Coat. Technol., 2006, 201: 3982
[20] Wei L, Mei F H, Shao N, et al.Study on the growth and superhardness of TiN/SiO2 nanomultilayers[J]. Acta Phys. Sin., 2005, 54: 1742
[20] (魏仑, 梅芳华, 邵楠等. TiN/SiO2纳米多层膜的晶体生长与超硬效应[J]. 物理学报, 2005, 54: 1742)
[21] Shi J, Kumar A, Zhang L, et al.Effect of Cu addition on properties of Ti-Al-Si-N nanocomposite films deposited by cathodic vacuum arc ion plating[J]. Surf. Coat. Technol., 2012, 206: 2947
[22] H?rling A, Hultman L, Odén M, et al.Thermal stability of arc evaporated high aluminum-content Ti1-xAlxN thin films[J]. J. Vac. Sci. Technol., 2002, 20A: 1815
[23] PalDey S, Deevi S C. Single layer and multilayer wear resistant coatings of (Ti, Al) N: A review[J]. Mater. Sci. Eng., 2003, A342: 58
[24] Jin L.Study on the preparation and properties of Ti1-xAlxN films deposited by the multi-arc techniques [D]. Wuhan: Wuhan University of Science and Technology, 2006
[24] (金犁. 多弧离子镀制备Ti1-xAlxN薄膜的工艺及其性能研究 [D]. 武汉: 武汉科技大学, 2006)
[25] Wang X C, Zhang X Y.Modern Materials Analysis and Testing Technology [M]. Beijing: National Defense Industry Press, 2010: 82
[25] (王晓春, 张希艳. 材料现代分析与测试技术 [M]. 北京: 国防工业出版社, 2010: 82)
[26] Zou Z X, Xiang J Z, Xu S Y.Theoretical derivation of Hall-Petch relationship and discussion of its applicable range[J]. Phys. Exam. Test., 2012, 30(6): 13
[26] (邹章雄, 项金钟, 许思勇. Hall-Petch关系的理论推导及其适用范围讨论[J]. 物理测试, 2012, 30(6): 13)
[27] Carvalho N J M, Zoestbergen E, Kooi B J, et al. Stress analysis and microstructure of PVD monolayer TiN and multilayer TiN/(Ti, Al)N coatings[J]. Thin Solid Films, 2003, 429: 179
[28] Jiang F Q.Adhesion measurement of titanium nitride coatings using the scratch test [D]. Chengdu: Southwest Jiaotong University, 2012
[28] (江范清. 划痕法评价氮化钛薄膜结合力研究 [D]. 成都: 西南交通大学, 2012)
[29] Hultman L, Engstr?m C, Birch J, et al.Review of the thermal and mechanical stability of TiN-based thin films[J]. Z. Metallkd., 1999, 90: 803
[30] Mendibide C, Fontaine J, Steyer P, et al.Dry sliding wear model of nanometer scale multilayered TiN/CrN PVD hard coatings[J]. Tribol. Lett., 2004, 17: 779
[1] 王海峰, 张志明, 牛云松, 杨延格, 董志宏, 朱圣龙, 于良民, 王福会. 前置渗氧对TC4钛合金低温等离子复合渗层微观结构和耐磨损性能的影响[J]. 金属学报, 2023, 59(10): 1355-1364.
[2] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[3] 王韬, 龙弟均, 余黎明, 刘永长, 李会军, 王祖敏. 超高压烧结制备14Cr-ODS钢及微观组织与力学性能[J]. 金属学报, 2022, 58(2): 184-192.
[4] 项兆龙, 张林, XIN Yan, 安佰灵, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, 王恩刚. Cr含量对FeCrCoSi永磁合金调幅分解组织及其性能的影响[J]. 金属学报, 2022, 58(1): 103-113.
[5] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[6] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.
[7] 童文辉, 张新元, 李为轩, 刘玉坤, 李岩, 国旭明. 激光工艺参数对TiC增强钴基合金激光熔覆层组织及性能的影响[J]. 金属学报, 2020, 56(9): 1265-1274.
[8] 张林, 郭晓, 高建文, 邓安元, 王恩刚. 电磁搅拌对TiB2颗粒增强钢组织和力学性能的影响[J]. 金属学报, 2020, 56(9): 1239-1246.
[9] 邓聪坤,江鸿翔,赵九洲,何杰,赵雷. Ag-Ni偏晶合金凝固过程研究[J]. 金属学报, 2020, 56(2): 212-220.
[10] 刘艳梅, 王铁钢, 郭玉垚, 柯培玲, 蒙德强, 张纪福. Ti-B-N纳米复合涂层的设计、制备及性能[J]. 金属学报, 2020, 56(11): 1521-1529.
[11] 刘海霞, 陈金豪, 陈杰, 刘光磊. NaCl溶液腐蚀后304不锈钢的射流空蚀特征[J]. 金属学报, 2020, 56(10): 1377-1385.
[12] 李博,张忠铧,刘华松,罗明,兰鹏,唐海燕,张家泉. 高强耐蚀管钢点状偏析及带状缺陷的特征与演变[J]. 金属学报, 2019, 55(6): 762-772.
[13] 邵毅, 李彦默, 刘晨曦, 严泽生, 刘永长. 低碳铁素体不锈钢高频直缝电阻焊管退火工艺优化[J]. 金属学报, 2019, 55(11): 1367-1378.
[14] 李冬梅, 姜贝贝, 李晓娜, 王清, 董闯. 高硬导电Cu-Ni-Si合金成分规律[J]. 金属学报, 2019, 55(10): 1291-1301.
[15] 翟斌, 周凯, 吕鹏, 王海鹏. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54(5): 824-830.