Please wait a minute...
金属学报  2016, Vol. 52 Issue (4): 394-402    DOI: 10.11900/0412.1961.2015.00371
  论文 本期目录 | 过刊浏览 |
固态相变对P92钢焊接接头残余应力的影响*
邓德安1,2(),张彦斌1,李索1,童彦刚1
1 重庆大学材料科学与工程学院, 重庆 400045
2 哈尔滨工业大学先进焊接与连接国家重点实验室, 哈尔滨 150001
INFLUENCE OF SOLID-STATE PHASE TRANSFOR-MATION ON RESIDUAL STRESS IN P92STEEL WELDED JOINT
Dean DENG1,2(),Yanbin ZHANG1,Suo LI1,Yangang TONG1
1 College of Materials Science and Engineering, Chongqing University, Chongqing 400045, China
2 State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
引用本文:

邓德安,张彦斌,李索,童彦刚. 固态相变对P92钢焊接接头残余应力的影响*[J]. 金属学报, 2016, 52(4): 394-402.
Dean DENG, Yanbin ZHANG, Suo LI, Yangang TONG. INFLUENCE OF SOLID-STATE PHASE TRANSFOR-MATION ON RESIDUAL STRESS IN P92STEEL WELDED JOINT[J]. Acta Metall Sin, 2016, 52(4): 394-402.

全文: PDF(1088 KB)   HTML
摘要: 

采用光学显微镜、显微硬度仪和盲孔法研究了P92钢平板焊接接头的微观组织、显微硬度和表面残余应力分布. 同时, 基于SYSWELD软件开发了考虑材料固态相变的热-冶金-力学耦合的有限元计算方法, 并采用该方法模拟了P92钢的Satoh试验和单道堆焊接头的温度场及应力场分布, 探讨了固态相变引起的体积变化、屈服强度变化和相变塑性(TRIP)对焊接残余应力形成过程及最终残余应力分布的影响. 实验结果表明, P92钢平板焊接接头焊缝组织为淬火马氏体, 其平均显微硬度为440 HV, 母材(BM)组织为回火马氏体, 其显微硬度为240 HV. Satoh试验的数值模拟表明, 固态相变引起的体积变化和屈服强度变化不仅对残余应力的形成过程及最终应力的分布和峰值大小有显著影响, 甚至可以改变应力的符号; 而TRIP效应则具有减缓因体积膨胀和屈服强度变化所引起应力变化趋势的作用. 进一步的计算结果表明, P92钢堆焊接头焊缝和热影响区(HAZ)的纵向残余应力为压应力, 而靠近HAZ的BM上存在较大的纵向拉应力, 峰值为600 MPa, 该值超过了P92钢的室温屈服强度; 整个焊接接头的横向残余应力峰值为130 MPa, 远小于其纵向残余应力的峰值. 数值计算结果与盲孔法测量得到的结果比较吻合, 表明了所开发的热-冶金-力学耦合的有限元计算方法有较高的计算精度.

关键词 固态相变Satoh试验残余应力TRIPSYSWELD数值模拟    
Abstract

Microstructure and welding residual stresses in ferritic heat-resistant steels such as P92 have been considered as one of the most important factors in the structural integrity and life assessment of power plant weldments. Applying computational tools to predict microstructure and residual stress distribution in practical welded structures is a preferable way to create safer, more reliable and lower cost structures. In this work, the effects of volume change, yield strength variation and transformation induced plasticity (TRIP) on the generation of residual stresses in P92 steel welded joints were investigated experimentally and numerically. Optical microscope and Vickers hardness tester were used to characterize the microstructure and hardness of the weldments. The hole-drilling strain-gage method was employed to determine the residual stress distribution across the weldments. Based on SYSWELD software, a thermal-metallurgical-mechanical finite element method (FEM) was developed to simulate welding temperature field and residual stress distribution in P92 steel joints. Firstly, numerical simulations of Satoh test were carried out to clarify the influence of solid-state phase transformation on the formation of residual stresses. The simulation results show that the volume change and the yield stress variation have a great effect on the magnitude and distribution profiles of residual stresses in the fusion zone (FZ) and heat affected zone (HAZ), and even alter the sign of the stresses, while TRIP have a relaxation effect on the tendency of stress variation during phase transformation. Secondly, a FEM was established to calculate the welding residual stress distribution in a single-pass bead-on P92 steel joint. In the FEM, three main constituent phases (austenite, untempered martensite and tempered martensite) in P92 steel were taken into account. Finally, the simulation results of welding residual stress were compared with the experiments obtained by hole-drilling method. The numerical simulation results are generally in a good agreement with the measured data.

Key wordssolid-state phase transformation    Satoh test    residual stress    TRIP    SYSWELD    numerical simulation
收稿日期: 2015-07-10     
基金资助:* 国家自然科学基金资助项目51275544
图1  焊接试件几何尺寸示意图
图2  应变片布置示意图
图3  显微硬度测量点位置示意图
图4  热-冶金-力学耦合示意图
图5  P92钢的高温热物理性能
图6  Goldak双椭球热源热流分布示意图
图7  P92钢加热和冷却过程中的温度-应变曲线
图8  P92钢屈服强度在焊接热循环中的变化
图9  Satoh试验的有限元模型与约束条件示意图
Case Volume Yield strength TRIP
change variation
A No No No
B Yes No No
C No Yes No
D Yes Yes No
E Yes Yes Yes
表1  计算案例的具体考虑因素
图10  有限元模型和约束条件示意图
图11  P92钢焊接接头显微组织
图12  P92钢焊接接头Vickers硬度分布
图13  Satoh试验模拟结果
图14  熔化区的实验结果与模拟结果对比
图15  焊接残余应力的分布
图16  中央断面上表面残余应力计算结果与实验测量结果对比
[1] Yang F, Zhang Y L, Ren Y N, Li W M.Welding of New Heat-Resisting Steels. Beijing: China Electric Power Press, 2007: 18
[1] (杨富, 章应霖, 任永宁, 李为民. 新型耐热钢焊接. 北京: 中国电力出版社, 2007: 18)
[2] Francis J A, Mazur W, Bhadeshia H K D H.Mater Sci Technol, 2006; 22: 1387
[3] Francis J A, Bhadeshia H K D H, Withers P J.Mater Sci Technol, 2007; 23: 1006
[4] Ueda Y, Murakawa H, Ma N.Welding Deformation and Residual Stress Prevention. Waltham: Elsevier, 2012: 1
[5] Lindgren L E. Computational Welding Mechanics.London: Woodhead Publishing, 2007: 1
[6] Deng D, Murakawa H.Comp Mater Sci, 2006; 37: 209
[7] Deng D A, Murakawa H, Ma N X.Trans China Weld Inst, 2014; 35(8): 9
[7] (邓德安, 村川英一, 麻宁绪. 焊接学报, 2014; 35(8): 9)
[8] Yaghi A H, Hyde T H, Becker A A, Williams J A, Sun W. J Mater Process Technol, 2005; 167: 480
[9] Liu J Y, Lu H, Chen J M, Liu J Y.Trans China Weld Inst, 2008; 29(3): 105
[9] (刘俊?, 陆皓, 陈俊梅, 刘锦阳. 焊接学报, 2008; 29(3): 105)
[10] Deng D A, Liu X Z, He J, Liang W.Int J Adv Manuf Technol, 2016; 82: 1049
[11] Ram K, Dieter S.Int J Pres Ves Pip, 2010; 87: 643
[12] Kumar S, Awasthi R, Viswanadham C S, Bhanumurthy K, Dey G K.Mater Des, 2014; 59: 211
[13] Goldak J, Chakravarti A, Bibby M.Metall Mater Trans, 1984; 15B: 299
[14] Deng D A, Kiyoshima S.Acta Metall Sin, 2014; 50: 626
[14] (邓德安, 青岛祥一. 金属学报, 2014; 50: 626)
[15] ESI Group.Reference Manual for SYSWELD? 2009. Paris: ESI France, 2008: 10
[16] Inoue T.J Jpn Soc Mater Sci, 2007; 56: 352
[17] Leblond J B, Devaux J, Devaux J C.Int J Plast, 1989; 5: 551
[18] Satoh K.Trans Jpn Weld Soc, 1972; 3: 125
[19] Li X M, Zhang Z W, Du B S, Peng X Y. Heat Treat Met, 2012; 37(5): 38
[19] (李新梅, 张忠文, 杜宝帅, 彭宪友. 金属热处理, 2012; 37(5): 38)
[20] Liang W, Murakawa H, Deng D A.Mater Des, 2015; 67: 303
[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 杜金辉, 毕中南, 曲敬龙. 三联冶炼GH4169合金研究进展[J]. 金属学报, 2023, 59(9): 1159-1172.
[3] 李时磊, 李阳, 王友康, 王胜杰, 何伦华, 孙光爱, 肖体乔, 王沿东. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价[J]. 金属学报, 2023, 59(8): 1001-1014.
[4] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[5] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[6] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[7] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[8] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[9] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[10] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.
[11] 张新房, 向思奇, 易坤, 郭敬东. 脉冲电流调控金属固体中的残余应力[J]. 金属学报, 2022, 58(5): 581-598.
[12] 苏凯新, 张继旺, 张艳斌, 闫涛, 李行, 纪东东. 微弧氧化6082-T6铝合金的高周疲劳性能及残余应力松弛机理[J]. 金属学报, 2022, 58(3): 334-344.
[13] 骆文泽, 胡龙, 邓德安. SUS316不锈钢马鞍形管-管接头的残余应力数值模拟及高效计算方法开发[J]. 金属学报, 2022, 58(10): 1334-1348.
[14] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[15] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.