Please wait a minute...
金属学报  2016, Vol. 52 Issue (6): 661-671    DOI: 10.11900/0412.1961.2015.00618
  论文 本期目录 | 过刊浏览 |
N对汽车发动机用新型奥氏体耐热铸钢1000 ℃蠕变性能的影响*
张银辉1,LIMei2,GODLEWSKILarryA2,ZINDELJacobW2,冯强1,3()
1 北京科技大学新金属材料国家重点实验室, 北京 100083
2 Ford Research and Advanced Engineering Laboratory, Ford Motor Company, Dearborn, 48124-4356, USA
3 北京科技大学高端金属材料特种熔炼与制备北京市重点实验室, 北京 100083
EFFECTS OF N ON CREEP PROPERTIES OF AUSTENI-TIC HEAT-RESISTANT CAST STEELS DEVELOPEDFOR EXHAUST COMPONENT APPLICATIONSAT 1000 ℃
Yinhui ZHANG1,Mei LI2,Larry A GODLEWSKI2,Jacob W ZINDEL2,Qiang FENG1,3()
1 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
2 Ford Research and Advanced Engineering Laboratory, Ford Motor Company, Dearborn 48124-4356, USA
3 Beijing Key Laboratory of Special Melting and Reparation of High-End Metal Materials, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

张银辉,LIMei,GODLEWSKILarryA,ZINDELJacobW,冯强. N对汽车发动机用新型奥氏体耐热铸钢1000 ℃蠕变性能的影响*[J]. 金属学报, 2016, 52(6): 661-671.
Yinhui ZHANG, Mei LI, Larry A GODLEWSKI, Jacob W ZINDEL, Qiang FENG. EFFECTS OF N ON CREEP PROPERTIES OF AUSTENI-TIC HEAT-RESISTANT CAST STEELS DEVELOPEDFOR EXHAUST COMPONENT APPLICATIONSAT 1000 ℃[J]. Acta Metall Sin, 2016, 52(6): 661-671.

全文: PDF(1573 KB)   HTML
  
摘要: 

为了应对汽车发动机排气温度将大幅升高至1050 ℃的要求, 本工作以新设计的3种不同N含量(0~0.55%, 质量分数)的Nb稳定化奥氏体耐热铸钢为研究对象, 通过在1000 ℃, 50 MPa条件下的蠕变性能测试和蠕变前后的组织分析, 研究了N对奥氏体耐热铸钢1000 ℃蠕变性能的影响规律. 结果表明: 根据N添加量的不同, 合金之间的最小蠕变速率相差接近一个数量级. 合金的主要析出相为NbC, Nb(C, N)和富Cr相. 随着N含量的增加, 合金中NbC转变为Nb(C, N), 其形貌逐渐从草书体状转变为不规则的混合片块状, 并最终转变为多面体块状. 其中, 草书体状NbC能有效强化铸钢的晶界和枝晶间区域, 因而有利于提高高温蠕变性能. 富Cr相在晶界的粗化连接是合金蠕变断裂的主要裂纹源, 不利于蠕变性能. 富Cr相的二次析出还会降低奥氏体基体固溶的C含量, 从而降低其固溶强化能力. 草书体状NbC的析出及富Cr相含量的降低是新型奥氏体耐热铸钢蠕变性能提高的主要原因.

关键词 汽车发动机奥氏体耐热铸钢蠕变Nb(CN)凝固    
Abstract

To comply with more stringent environmental and fuel consumption regulations in recent years, automotive gasoline engines equipped with turbochargers are increasingly used to improve fuel efficiency. As a result, exhaust gas temperatures are now reaching 1050 ℃, about 200 ℃ higher than the conventional temperature. Hence, there is an urgent demand in automobile industries to develop novel and economic austenitic heat-resistant steels that are durable against these increased temperatures. In this study, the effects of N addition on creep behavior at 1000 ℃ and 50 MPa are investigated in a series of Nb-bearing austenitic heat-resistant cast steels, which are developed for exhaust component applications. Microstructures before and after creep rupture tests are carefully characterized to illustrate the microstructural evolution during creep deformation. The results of creep tests show approximately an order of magnitude increase in the minimum creep rate among the experimental alloys with variations of N addition. Microstructural analyses indicate that the morphology of NbC and Nb(C, N) is changed from “Chinese-script” to mixed flake-blocks, and then to faceted blocks as N additions increase. The best creep property occurs in an alloy with “Chinese-script” NbC, which could effectively strengthen the grain boundaries and interdendritic regions. The Cr-rich phases are adverse to creep properties, in particular those coarsened and coalesced phases along grain boundaries. They act as crack sources and accelerate the propagation of creep cracks. Moreover, the secondary precipitation of Cr-rich phase results in a significant decrease of C concentration in the matrix and thus reduces the solution strengthening ability during creep deformation. This study suggests that the strengthening of these austenitic cast steels can be achieved through the exploit of primary NbC and Nb(C, N) and the elimination of Cr-rich phases, and therefore, N additions should be strictly controlled.

Key wordsgasoline engine    austenitic heat-resistant cast steel    creep    Nb(C    N) carbonitride    solidification
收稿日期: 2015-12-03     
基金资助:* 福特与中国大学合作研究资助项目
Alloy Cr Ni Si Mn Nb C N Fe
4C0N 18.42 9.16 0.49 0.86 2.00 0.40 0.01 Bal.
4C3N 20.35 9.86 0.60 1.01 2.08 0.43 0.29 Bal.
4C5N 20.86 9.93 0.68 0.84 2.28 0.40 0.52 Bal.
表1  3种不同N含量合金的实测化学成分
图1  3种不同N含量合金在1000 ℃, 50 MPa条件下的典型蠕变应变-时间曲线和蠕变应变速率-时间曲线
图2  3种不同N含量合金的典型铸态组织的OM像
Alloy Creep life Minimum creep rate Creep strain
h 10-8 s-1 %
4C0N 94.8±13.0 1.8±0.6 15.4±1.0
4C3N 56.2±7.7 11.2±3.4 27.7±4.9
4C5N 13.2±0.8 78.8±12.4 35.4±7.3
表2  3种不同N含量合金在1000 ℃, 50 MPa条件下的蠕变性能
图3  3种不同N含量合金的典型铸态显微组织的SEM-BSE/SE像
Alloy Nb(C, N) Cr-rich phase Nb(C, N) number density
% % mm-1
4C0N 2.9±0.5 1.1±0.1 208
4C3N 2.6±0.4 0.4±0.2 52
4C5N 3.0±0.4 2.3±0.4 64
表3  3种不同N含量合金铸态组织中各析出相的面积分数和晶界上Nb(C, N)的线密度
图4  合金4C5N中胞状富Cr相和Nb(C, N)的EPMA形貌和面扫成分分布图
图5  3种不同N含量合金的晶粒EBSD取向成像图
图6  3种不同N含量合金在1000 ℃, 50 MPa条件下蠕变断裂后显微组织的SEM-BSE/SE像
图7  3种不同N含量合金在蠕变前后奥氏体基体的Vickers硬度
图8  3种不同N含量合金在1000 ℃, 50 MPa条件下蠕变断裂后断口附近显微组织的SEM-BSE像
图9  3种不同N含量合金的相组成-温度平衡相图
Alloy State Fe Cr Ni Si Mn Nb C N
4C0N As-cast 70.23±0.64 17.06±0.27 9.18±0.11 0.51±0.02 0.97±0.03 0.39±0.06 0.08±0.01 0
Crept 71.99±0.28 17.80±0.01 9.19±0.06 0.49±0.03 0.86±0.02 0.34±0.00 0.08±0.00 0
4C3N As-cast 67.67±2.55 20.58±1.80 10.01±0.25 0.65±0.11 0.10±0.12 0.24±0.05 0.15±0.01 0.06±0.04
Crept 70.64±0.33 18.94±0.17 9.73±0.01 0.59±0.01 0.90±0.02 0.25±0.02 0.04±0.01 0.05±0.01
4C5N As-cast 69.51±0.95 19.13±0.43 10.03±0.08 0.60±0.04 0.77±0.03 0.19±0.03 0.12±0.01 0.11±0.03
Crept 70.01±0.26 19.22±0.11 10.03±0.02 0.66±0.02 0.80±0.01 0.21±0.04 0.04±0.01 0.14±0.02
表4  3种不同N含量合金蠕变前后EPMA测得的奥氏体基体平均成分
[1] Takabayashi H, Ueta S, Shimizu T, Noda T.SAE Int J Mater Manuf, 2009; 2: 147
[2] Wang J X, Shuai S J. Automotive Engine Fundamentals.Beijing: Tsinghua University Press, 2011: 1(王建昕, 帅石金. 汽车发动机原理. 北京: 清华大学出版社, 2011: 1)
[3] Itoh K, Hayashi K, Souda T.Hitachi Met Tech Rev, 2006; 22: 51
[4] Matsumoto K, Tojo M, Jinnai Y, Hayashi N, Ibaraki S.Mitsubishi Heavy Ind Tech Rev, 2008; 45(3): 1
[5] Shingledecker J P, Maziasz P J, Evans N D, Pollard M J.Int J Pressure Vessels Piping, 2007; 84: 21
[6] Maziasz P J, Shingledecker J P, Evans N D, Pollard M J.J Pressure Vessel Technol, 2009; 131: 0514041
[7] Evans N D, Maziasz P J, Shingledecker J P, Pollard M J.Metall Mater Trans, 2010; 41A: 3032
[8] Sourmail T.Mater Sci Technol Lond, 2001; 17: 1
[9] Lo K H, Shek C H, Lai J K L.Mater Sci Eng, 2009; R65: 39
[10] Yu Y N, Yang P, Qiang W J, Chen L.Foundations of Materials Science. Beijing: High Education Press, 2006: 412(余永宁, 杨平, 强文江, 陈冷. 材料科学基础. 北京: 高等教育出版社, 2006: 412)
[11] Reed R.JOM, 1989; 41(3): 16
[12] Mujica Roncery L, Weber S, Theisen W.Acta Mater, 2011; 59: 6275
[13] Knutsen R D, Lang C I, Basson J A.Acta Mater, 2004; 52: 2407
[14] Hsiao C M. Acta Metall Sin, 1958; 3: 138(萧纪美. 金属学报, 1958; 3: 138)
[15] Yamamoto Y, Brady M P, Santella M L, Bei H, Maziasz P J, Pint B A.Metall Mater Trans, 2011; 42A: 922
[16] Cutler E R, Wasson A J, Fuchs G E.Scr Mater, 2008; 58: 146
[17] Elmer J, Allen S, Eagar T.Metall Mater Trans, 1989; 20A: 2117
[18] Fu H Z, Guo J J, Liu L, Li J S.Directional Solidification and Processing of Advanced Materials. Beijing: Science Press, 2008: 223
[18] (傅恒志, 郭景杰, 刘林, 李金山. 先进材料定向凝固. 北京: 科学出版社, 2008: 223)
[19] Yong Q L.Secondary Phases in Steels. Beijing: Metallurgical Industry Press, 2006: 59
[19] (雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 59)
[20] Lee K M, Cho H S, Choi D C.J Alloys Compd, 1999; 285: 156
[21] Smith W F, Hashemi J.Foundations of Materials Science and Engineering. 4th Ed., New York: McGraw-Hill Education, 2005: 3
[22] Zhu S J, Zhao J, Wang F G.Metall Trans, 1990; 21A: 2237
[23] Ribeiro E A A G, Papaléo R, Guimar?es J R C.Metall Trans, 1986; 17A: 691
[24] Larson J M, Floreen S.Metall Trans, 1977; 8A: 51
[25] Zhang J S.High Temperature Deformation and Fracture of Materials. Beijing: Science Press, 2007: 3(张俊善. 材料的高温变形与断裂. 北京: 科学出版社, 2007: 3)
[26] Zhang J S, Li P E, Jin J Z.Acta Metall, 1991; 39: 3063
[27] Rettberg L H, Pollock T M.Acta Mater, 2014; 73: 287
[28] Min K S, Nam S W.J Nucl Mater, 2003; 322: 91
[29] Cutler E R, Wasson A J, Fuchs G E.J Cryst Growth, 2009; 311: 3753
[30] Piekarski B.Mater Charact, 2010; 61: 899
[31] Zhang Y H, Li M, Godlewski L A, Zindel J W, Feng Q.Metall Mater Trans, 2016; DOI: 10.1007/s11661-016-3544-1, in press
[32] Buchanan K, Kral M.Metall Mater Trans, 2012; 43A: 1760
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[3] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[4] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[5] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[6] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[7] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[8] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[9] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[10] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[11] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[12] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[13] 李闪闪, 陈云, 巩桐兆, 陈星秋, 傅排先, 李殿中. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响[J]. 金属学报, 2022, 58(8): 1024-1034.
[14] 郭东伟, 郭坤辉, 张福利, 张飞, 曹江海, 侯自兵. 基于二次枝晶间距变化特征的连铸方坯CET位置判断新方法[J]. 金属学报, 2022, 58(6): 827-836.
[15] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.