Please wait a minute...
金属学报  2014, Vol. 50 Issue (8): 897-904    DOI: 10.11900/0412.1961.2013.00850
  本期目录 | 过刊浏览 |
Fe-Mn-Al轻质高强钢组织和力学性能研究*
杨富强, 宋仁伯(), 孙挺, 张磊峰, 赵超, 廖宝鑫
北京科技大学材料科学与工程学院, 北京 100083
MICROSTRUCTURE AND MECHANICAL PROPER- TIES OF Fe-Mn-Al LIGHT-WEIGHT HIGH STRENGTH STEEL
YANG Fuqiang, SONG Renbo(), SUN Ting, ZHANG Leifeng, ZHAO Chao, LIAO Baoxin
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
引用本文:

杨富强, 宋仁伯, 孙挺, 张磊峰, 赵超, 廖宝鑫. Fe-Mn-Al轻质高强钢组织和力学性能研究*[J]. 金属学报, 2014, 50(8): 897-904.
Fuqiang YANG, Renbo SONG, Ting SUN, Leifeng ZHANG, Chao ZHAO, Baoxin LIAO. MICROSTRUCTURE AND MECHANICAL PROPER- TIES OF Fe-Mn-Al LIGHT-WEIGHT HIGH STRENGTH STEEL[J]. Acta Metall Sin, 2014, 50(8): 897-904.

全文: PDF(6358 KB)   HTML
摘要: 

对热轧态与固溶处理后Fe-Mn-Al轻质高强钢进行力学性能检测及组织形貌观察, 分析950~1100 ℃固溶处理工艺对其组织和力学性能的影响规律, 根据真实应力-应变曲线和加工硬化曲线分析拉伸变形特征, 对比拉伸变形前后微观组织形貌和XRD谱, 研究其微观变形机理. 研究结果表明, 所设计的成分体系实验用钢, 热轧后为奥氏体基体与少量带状铁素体的双相组织, 密度为6.55 g/cm3, 达到了轻质高强的设计目标. 固溶处理有利于奥氏体晶粒长大与带状铁素体的破碎分解, 使钢板强度降低而塑性提高, 但是过高的固溶温度会促进铁素体长大, 使铁素体体积分数增大, 钢的断后伸长率降低. 1050 ℃固溶处理后Fe-Mn-Al钢抗拉强度为925.9 MPa, 断后伸长率为50.20%, 强塑积为46.48 GPa·%. 连续的应变强化行为使得Fe-Mn-Al钢获得高强度与塑性的良好匹配, 稳定硬化阶段应变范围越宽, 断后伸长率越大; 较高的层错能使其变形机理区别于TRIP和TWIP效应, 变形后仍为奥氏体+铁素体双相组织, 变形后奥氏体中可以观察到Taylor晶格、高密度位错墙以及微带结构, 为明显的平面滑移特征.

关键词 Fe-Mn-Al钢轻质高强钢固溶处理位错滑移    
Abstract

The automobile industry pays lots of attention on a new kind of steel with excellent combination of strength and ductility as well as the lower density, aiming at developing more affordable and safe vehicles with less fuel composition and air pollution. Fe-Mn-Al steel, adding more Al and C elements into twinning induced plasticity (TWIP) steel, shows amazing mechanical properties, corrosion resistant and weight reduction than traditional steel. The mechanical properties and microstructure of Fe-27Mn-11.5Al-0.95C-0.59Si steel after hot rolling and solid solution treatment were investigated to analysis the evolution within the range of 950~1100 ℃. Based on the true stress-strain curves and corresponding strain hardening rate, the characteristic of Fe-Mn-Al steel could be obtained. The deformation mechanism was learned by comparing the microstructure and XRD after tensile deformation. The results show that, with the designed composition system, hot rolled steel has the duplex structure of austenite matrix and small amount of banded ferrite with tensile strength of 1315.6 MPa and density of 6.55 g/cm3, which achieves the research targets of high strength and light-weight. Solid solution treatment contributes to austenite growth and banded ferrite crushing. But exorbitant temperature results in coarse and higher volume fraction of ferrite, and the ductility drops as well as the strength. The tensile strength and elongation of the steel solution treated at 1050 ℃ are 925.9 MPa and 50.20%, respectively. Product of tensile strength and elongation is 46.48 GPa·%. Continuous strain hardening behavior provides Fe-Mn-Al steel with perfect combination of strength and ductility. The wider the constant hardening stage, the larger of measured elongation. With the estimated stack fault energy of 86 mJ/m2, the dual phase structure of austenite and ferrite is retained after tensile deformation other than transformation induced plasticity (TRIP) or TWIP effects, and the microstructure of deformed sample, including Taylor lattice, high density dislocation wall and microband, shows the obvious characteristic of planer gliding with obvious slip bands on the surface of deformed austenite. The dislocation gliding observed by TEM is consistent with MBIP theory and should be confirmed by a mount of experiments and contrast in further.

Key wordsFe-Mn-Al steel    light-weight and high strength steel    solid solution treatment    dislocation gliding
收稿日期: 2013-12-31     
ZTFLH:  TG142.7  
作者简介: null

杨富强, 男, 1986年生, 博士生

图1  热轧后Fe-Mn-Al钢的微观组织
图2  热轧Fe-Mn-Al钢板的XRD谱
T / ℃ Rm / MPa Rp0.2 / MPa A50 / % Rm·A50 / (GPa·%)
950 1069.9 931.6 15.12 16.18
1000 976.3 786.9 43.56 42.53
1050 925.9 725.1 50.20 46.48
1100 906.8 717.4 47.20 42.80
表1  固溶处理后Fe-Mn-Al钢的力学性能
图3  Fe-Mn-Al钢经不同温度固溶处理后的金相组织
图4  Fe-Mn-Al钢中铁素体体积分数随固溶温度的变化
图5  固溶处理后Fe-Mn-Al钢真实应力-应变曲线和加工硬化曲线
图6  热轧态与1050 ℃固溶处理后拉伸试样的断口形貌
图7  Fe-Mn-Al钢变形后组织形貌
图8  Fe-Mn-Al钢变形前后的XRD谱
图9  Fe-Mn-Al钢变形后位错结构的TEM像
[1] Suh D W, Kim N J. Scr Mater, 2013; 68: 337
[2] Hwang S W, Ji J H, Park K T. Mater Sci Eng, 2011; A528: 7267
[3] Sahraoui T, Hadji M, Yahi M. Mater Sci Eng, 2009; A523: 271
[4] Park K, Kim G, Kim S K, Lee S W, Hwang S W, Lee C S. Met Mater Int, 2010; 16: 1
[5] Saeed-Akbari A, Imlau J, Prahl U, Bleck W. Metall Mater Trans, 2009; 40A: 3076
[6] Torabinejad V, Zarei-Hanzaki A, Moemeni S, Imandoust A. Mater Des, 2011; 32: 5015
[7] Frommeyer G, Brux U. Steel Res Int, 2006; 77: 627
[8] Yoo J D, Park K. Mater Sci Eng, 2008; A496: 417
[9] Yoo J D, Hwang S W, Park K. Mater Sci Eng, 2009; A508: 234
[10] Yoo J D, Hwang S W, Park K T. Metall Mater Trans, 2009; 40A: 1520
[11] Choi K, Seo C, Lee H, Kim S K, Kwak J H. Scr Mater, 2010; 63: 1028
[12] Kalashnikov I, Shalkevich A, Acselrad O, Peraira L C. J Mater Eng Perform, 2000; 9: 597
[13] Ma F C, Liu P, Li W, Feng W J, Wang L. Trans Mater Heat Treat, 2010; 31(9): 64
[13] (马凤仓, 刘 平, 李 伟, 封为骏, 王 利. 材料热处理学报, 2010; 31(9): 64)
[14] Bao W P, Zhao Y J, Xu L W, Xiong Z P, Ren X P. Heat Treat Met, 2010; 35(4): 33
[14] (包卫平, 赵艳君, 许立伟, 熊志平, 任学平. 金属热处理, 2010; 35(4): 33)
[15] Umino R, Liu X, Sutou Y, Wang C, Ohnuma I, Kainuma R. J Phase Equilib Diff, 2006; 27: 54
[16] Park K, Jin K G, Han S H, Hwang S W, Choi K, Lee S W. Mater Sci Eng, 2010; A527: 3651
[17] Ding H, Yang P. J Mater Metall, 2010; 9: 265
[17] (丁 桦, 杨 平. 材料与冶金学报, 2010; 9: 265)
[18] Gutierrez I, Raabe D. Acta Metar, 2012; 60: 5791
[19] Dumay A, Chateau J P, Allain S, Migot S, Bouaziz O. Mater Sci Eng A, 2008; 483-484: 184
[20] Poy N C. PhD Dissertation, University Ghent, 2004
[21] Talonen J, Hanninen H. Acta Mater, 2007; 55: 6108
[22] Paul H, Morawiec A, Driver J H, Bouzy E. Int J Plast, 2009; 25: 1588
[23] Imandoust A, Zarei-Hanzaki A, Abedi H R. Scr Mater, 2012; 67: 995
[24] Dong H, Sun X. Curr Opin Solid State Mater Sci, 2005; 9: 269
[25] Hughes D A. Acta Metall Mater, 1993; 41: 1421
[26] Park K. Scr Mater, 2013; 68: 375
[1] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[2] 曹铁山, 赵津艺, 程从前, 孟宪明, 赵杰. 冷变形和固溶温度对HR3C钢中σ相析出行为的影响[J]. 金属学报, 2020, 56(5): 673-682.
[3] 魏琳,王志军,吴庆峰,尚旭亮,李俊杰,王锦程. Mo元素及热处理对Ni2CrFeMox高熵合金在NaCl溶液中耐蚀性能的影响[J]. 金属学报, 2019, 55(7): 840-848.
[4] 陈胜虎, 戎利建. Ni-Fe-Cr合金固溶处理后的组织变化及其对性能的影响[J]. 金属学报, 2018, 54(3): 385-392.
[5] 张洪伟,秦学智,李小武,周兰章. 一种高硼定向凝固合金的初熔行为及其对力学性能的影响[J]. 金属学报, 2017, 53(6): 684-694.
[6] 张晓嵩,徐勇,张士宏,程明,赵永好,唐巧生,丁月霞. 塑性变形及固溶处理对奥氏体不锈钢晶间腐蚀性能的协同作用研究[J]. 金属学报, 2017, 53(3): 335-344.
[7] 何波,聂庆武,张洪宇,韦华. 固溶处理对CoCrW合金组织及耐磨性能的影响*[J]. 金属学报, 2016, 52(4): 484-490.
[8] 游晓红,王刚刚,王军,许涛,张洪宇,韦华. 固溶处理对热压CoCrW合金组织及力学性能的影响*[J]. 金属学报, 2016, 52(2): 161-167.
[9] 石晶,郭振玺,隋曼龄. a-Ti在原位透射电镜拉伸变形过程中位错的滑移系确定*[J]. 金属学报, 2016, 52(1): 71-77.
[10] 陈雨来,罗照银,李静媛. 固溶温度对S32760双相不锈钢组织与耐点蚀性能的影响[J]. 金属学报, 2015, 51(9): 1085-1091.
[11] 卢磊, 尤泽升. 纳米孪晶金属塑性变形机制*[J]. 金属学报, 2014, 50(2): 129-136.
[12] 贺宏, 李静媛, 秦丽雁, 王一德, 房菲. 不同变形工艺后0Cr32Ni7Mo4N双相不锈钢的组织及性能*[J]. 金属学报, 2014, 50(1): 1-10.
[13] 刘欢,薛烽,白晶,周健,孙扬善. 含长周期结构Mg-(2, 3, 4)Y-1Zn合金的显微组织和力学性能[J]. 金属学报, 2013, 49(2): 236-242.
[14] 杨光昱 孟宏帅 齐元昊 刘少军 介万奇. Al-6.3Zn-2.8Mg-1.8Cu铸造铝合金的组织和室温力学性能[J]. 金属学报, 2012, 48(2): 211-219.
[15] 陈胜虎 赵明久 戎利建. Ti和Al含量对Fe-Ni基合金中$\eta$相析出行为的影响[J]. 金属学报, 2012, 48(11): 1335-1341.