Please wait a minute...
金属学报  2014, Vol. 50 Issue (1): 1-10    DOI: 10.3724/SP.J.1037.2013.00393
  论文 本期目录 | 过刊浏览 |
不同变形工艺后0Cr32Ni7Mo4N双相不锈钢的组织及性能*
贺 宏1) 李静媛1) 秦丽雁2) 王一德1) 房 菲1)
1) 北京科技大学材料科学与工程学院, 北京 100083
2) 太原钢铁(集团)有限公司, 太原 030002
MICROSTRUCTURES AND PROPERTIES OF 0Cr32Ni7Mo4N DUPLEX STAINLESS STEEL AFTER VARIOUS FORMING PROCESSES
HE Hong 1), LI Jingyuan 1), QIN Liyan 2), WANG Yide 1), FANG Fei 1)
1) School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2) Taiyuan Iron & Steel (Group) Co. Ltd., Taiyuan 030002
全文: PDF(17483 KB)   HTML
摘要: 

研究了0Cr32Ni7Mo4N双相不锈钢热轧后冷轧和直接冷轧的成形性能, 分析了室温下α相和γ相的塑性变形机制以及经过热轧、冷轧及固溶处理后的组织演变规律, 并测试了2种成形工艺冷轧板热处理后的力学性能和耐蚀性能, 分别采用OM和SEM观察金相和腐蚀形貌. 结果表明: 实验钢在热轧后板边部开裂, 切边后经热处理再冷轧, 成形性良好; 铸态钢坯经过1100 ℃固溶处理后直接冷轧, 成形性能与其相当. 室温下α相的变形机制为多系滑移形成位错胞状结构, γ相为单系滑移和机械孪晶; 冷轧板随着热处理温度升高, 组织变得更均匀, 析出物颗粒数量减少; 直接冷轧的钢板经热处理后, 抗拉强度达到1082.9 MPa, 延伸率为29.3%, 在3.5%NaCl溶液中临界点蚀电位为1060 mV, 经过65%HNO3溶液腐蚀后失重率为0.05 g/(m2·h), 与常规热轧加冷轧后的钢板相当.

关键词 不锈钢成形工艺固溶处理组织耐蚀性能    
Abstract

Duplex stainless steels consist of a two phase microstructure involving α-ferrite and γ-austenite. These alloys have a remarkable combination of mechanical properties together with good corrosion resistance under critical working conditions and are suitable for marine and petro-chemical applications. However, the poor hot workability of these materials makes the industrial processing of flat products particularly critical. Many investigations focus on the mechanisms and behaviors of hot deformation on these materials. Several factors are frequently reported give rise to hot cracking: phase proportions, size and morphology of both phases, softening mechanisms in constituting phases, microstructural evolution during hot work, and strain partitioning between α and γ. On the contrary, few studies have been carried on cold rolling performance. Hot cracking should be avoid during forming process of duplex stainless steel, the more effective way of manufacturing in such materials is also needs research. In this work, the formability of 0Cr32Ni7Mo4N duplex stainless steel was studied in the hot rolling and directly cold rolling processes. The deformation mechanism of α and γ phase at room temperature, the microstructure evolution after hot rolling, cold rolling and solution treatment were investigated. Mechanical properties and corrosion resistance of two kinds of cold-rolled sheets were tested. The metallography and corrosion morphology were observed by OM and SEM. The results show that cracks emerged along the edge of hot-rolled plate even it was reheated three times, and it has good cold rolling formability after cutting edge of the plate. On the other hand the as-cast billet solution-treated at 1100 ℃ has good cold rolling performance. Deformation mechanism of α phase at room temperature is that multi-slip system form dislocation cell structure, while single slip model and mechanical twins appear in γ phase. As the temperature of heat-treatment raised, microstructure became more homogeneous and the amount of precipitate particles decreased. The experimental results show that the tensile strength of cold-rolled sheet after heat-treatment reaches 1082.9 MPa and the elongation is 29.3%. Critical pitting potential of the specimen in 3.5%NaCl liquor is 1060 mV; weight loss after intergranular corrosion in 65%HNO3 solution is 0.05 g/(m2·h).

Key wordsstainless steel    forming process    solution treatment    microstructure    corrosion resistance
收稿日期: 2013-07-10     
ZTFLH:  TG337.5  
Corresponding author: LI Jingyuan, professor, Tel: (010)82376939, E-mail: lijy@ustb.edu.cn   
作者简介: 贺宏, 男, 1988年生, 硕士生

引用本文:

贺宏, 李静媛, 秦丽雁, 王一德, 房菲. 不同变形工艺后0Cr32Ni7Mo4N双相不锈钢的组织及性能*[J]. 金属学报, 2014, 50(1): 1-10.
HE Hong, LI Jingyuan, QIN Liyan, WANG Yide, FANG Fei. MICROSTRUCTURES AND PROPERTIES OF 0Cr32Ni7Mo4N DUPLEX STAINLESS STEEL AFTER VARIOUS FORMING PROCESSES. Acta Metall Sin, 2014, 50(1): 1-10.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00393      或      https://www.ams.org.cn/CN/Y2014/V50/I1/1

[1] Sato Y S, Nelson T W, Sterling C J, Steel R J, Pettersson C O. Mater Sci Eng, 2005; A397: 376
[2] Han Y, Zou D N, Chen Z Y, Fan G W, Zhang W. Mater Charact, 2011; 62: 198
[3] Badji R, Bouabdallah M, Bacroix B, Kahloun C, Belkessa B, Maza H. Mater Charact, 2008; 59: 447
[4] Silva E M, Albuquerque V H C, Leite J P, Varela A C G, Moura E P D, Tavares J M. Mater Sci Eng, 2009; A516: 126
[5] Chai G C, Kivisakk U, Tokaruk J, Eidhagen J. Stainless Steel World, 2009; (03): 27
[6] Pinol-Juez A, Iza-Mendia A, Gutierrez I. Metall Mater Trans, 2000; 31A: 1671
[7] Martin G, Yerra S K, Bréchet Y, Véron M, Mithieux J, Chéhab B, Delannay L, Pardoen T. Acta Mater, 2012; 60: 4646
[8] Fang Y L, Liu Z Y, Song H M, Jiang L Z. Mater Sci Eng, 2009; A526: 128
[9] Jorge A M, Reis G S, Balancin O. Mater Sci Eng, 2011; A528: 2259
[10] Qin Y F, Jiang L Z, Song H M, Zhang W, Hu J C, Jin X J. J Iron Steel Res, 2010; 22(8): 45
(秦焰锋, 江来珠, 宋红梅, 张 伟, 胡锦程, 金学军. 钢铁研究学报, 2010; 22(8): 45)
[11] Marinelli M C, Degallaix S, Alvarez-Armas I. Mater Sci Eng, 2006; A435: 305
[12] Farnoush H, Momeni A, Dehghani K, Mohandesi J A, Keshmiri H. Mater Des, 2010; 31: 220
[13] Fan G W, Liu J, Han P D, Qiao G J. Mater Sci Eng, 2009; A515: 108
[14] Bartali A, Evrard P, Aubin V, Heren U, Alvarez-Armas I, Armas A F, Degallaix-Moreuil S. Proc Eng, 2010; 2: 2229
[15] Wang S T, Yang K, Shan Y Y, Li L F. Acta Metall Sin, 2007; 43: 171
(王松涛, 杨 柯, 单以银, 李来风. 金属学报, 2007; 43: 171)
[16] Nibur K A, Bahr D F. Scr Mater, 2003; 49: 1055
[17] Song R B, Xiang J Y, Hou D P. J Univ Sci Technol Beijing, 2013; 35: 55
(宋仁伯, 项建英, 侯东坡. 北京科技大学学报, 2013; 35: 55)
[18] Xiang H L, Huang W L, Liu D, He F S. Acta Metall Sin, 2010; 46:304
(向红亮, 黄伟林, 刘 东, 何福善. 金属学报, 2010; 46: 304)
[19] Weisbrodt-Reisch A, Brummer M, Hadler B, Wolbank B, Werner E A. Mater Sci Eng, 2006; A416: 1
[20] Zhao Z Y, Xu L, Li G P, Xue R D, Zheng J H. Trans Mater Heat Treat, 2010; 31: 75
(赵志毅, 徐 林, 李国平, 薛润东, 郑建华. 材料热处理学报, 2010; 31: 75)
[21] Moura V S, Lima L D, Pardal J M, Kina A Y, Corte R R A, Tavares S S M. Mater Charact, 2008; 59: 1127
[22] Do Nascimento A M, Ierardi M, Kina A Y, Tavares S. Mater Charact, 2008; 59: 1736
[23] Kim S, Lee I, Kim J, Jang S, Park Y, Kim K, Kim Y. Corros Sci, 2012; 64: 164
[24] Tan H, Jiang Y, Deng B, Sun T, Xu J, Li J. Mater Charact, 2009; 60: 1049
[25] Ortiz N, Curiel F F, López V H, Ruiz A. Corros Sci, 2013; 69: 236
[1] 陈永君, 白妍, 董闯, 解志文, 燕峰, 吴迪. 基于有限元分析的准晶磨料强化不锈钢表面钝化行为[J]. 金属学报, 2020, 56(6): 909-918.
[2] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[3] 于家英, 王华, 郑伟森, 何燕霖, 吴玉瑞, 李麟. 热浸镀锌高强汽车板界面组织对其拉伸断裂行为的影响[J]. 金属学报, 2020, 56(6): 863-873.
[4] 曹铁山, 赵津艺, 程从前, 孟宪明, 赵杰. 冷变形和固溶温度对HR3C钢中σ相析出行为的影响[J]. 金属学报, 2020, 56(5): 673-682.
[5] 刘震鹏, 闫志巧, 陈峰, 王顺成, 龙莹, 吴益雄. 金刚石工具用Cu-10Sn-xNi合金的制备和性能表征[J]. 金属学报, 2020, 56(5): 760-768.
[6] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[7] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
[8] 李根, 兰鹏, 张家泉. 基于Ce变质处理的TWIP钢凝固组织细化[J]. 金属学报, 2020, 56(5): 704-714.
[9] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[10] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[11] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[12] 刘振宝,梁剑雄,苏杰,王晓辉,孙永庆,王长军,杨志勇. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
[13] 彭云,宋亮,赵琳,马成勇,赵海燕,田志凌. 先进钢铁材料焊接性研究进展[J]. 金属学报, 2020, 56(4): 601-618.
[14] 张乐,王威,M. Babar Shahzad,单以银,杨柯. 新型多层金属复合材料的制备与性能[J]. 金属学报, 2020, 56(3): 351-360.
[15] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.