Please wait a minute...
金属学报  2013, Vol. 49 Issue (9): 1032-1040    DOI: 10.3724/SP.J.1037.2013.00128
  论文 本期目录 | 过刊浏览 |
Al-7%Si合金显微气孔形成的模拟研究
李正扬,朱鸣芳,戴挺
东南大学江苏省先进金属材料高技术研究重点实验室, 南京211189
MODELING OF MICROPOROSITY FORMATION IN AN Al-7%Si ALLOY
LI Zhengyang, ZHU Mingfang, DAI Ting
Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing 211189
引用本文:

李正扬,朱鸣芳,戴挺. Al-7%Si合金显微气孔形成的模拟研究[J]. 金属学报, 2013, 49(9): 1032-1040.
LI Zhengyang, ZHU Mingfang, DAI Ting. MODELING OF MICROPOROSITY FORMATION IN AN Al-7%Si ALLOY[J]. Acta Metall Sin, 2013, 49(9): 1032-1040.

全文: PDF(2417 KB)  
摘要: 

利用元胞自动机(cellular automaton, CA)方法, 建立了模拟枝晶和显微气孔的二维数值模型.该模型基于凝固过程中显微气孔的形成机理,考虑了枝晶和气孔的形核与生长、溶质和H的再分配与扩散、界面曲率效应等因素.模拟结果可描述气孔与枝晶组织的耦合竞争生长、以及溶质和H的微观偏析.应用该模型对Al-7%Si(质量分数)合金在凝固过程中显微气孔的形成进行了模拟研究,分析了初始H含量和冷却速率对显微气孔形成的影响,将模拟结果与实验结果进行了比较. 结果表明: 随初始H含量增加,气孔体积分数增大, 气孔形核和开始生长所需要的时间缩短.随冷却速率降低, 气孔体积分数和最大半径均增大,气孔在较高的温度下开始形核和生长.气孔之间以及气孔和枝晶之间存在竞争生长.

关键词 铝合金数值模拟凝固显微气孔元胞自动机    
Abstract

The performance of castings is primarily dependent on the solidification microstructures and defects. Gas porosity is one of the major casting defects existing in the castings of aluminium and magnesium alloys. In this work, a two-dimensional (2D) cellular automaton (CA) model is proposed to simulate dendrite and microporosity formation during solidification of alloys. The model involves three phases of liquid, gas and solid. The effect of liquid-solid phase transformation on the nucleation and growth of porosity, the redistribution and diffusion of solute and hydrogen, and the effects of surface tension and environmental pressure are taken into account. The growth of both dendrite and porosity is simulated using a CA approach. The diffusion of solute and hydrogen is calculated using the finite difference method (FDM). The simulations can reveal the coupling and competitive growth of dendrites and microporosities, as well as the microsegregation of solute and hydrogen. The model is applied to simulate the microporosity formation during solidification of an Al-7%Si (mass fraction) alloy. The effects of initial hydrogen concentration and cooling rate on microporosity formation are investigated. The results show that the simulated pressure difference between the inside and outside of a porosity as a function of the reciprocal of porosity radius obeys the Laplace law. With the increase of initial hydrogen concentration, porosity volume fraction increases, and the incubation time of microporosity nucleation and growth decreases, while the porosity density does not increase obviously. With cooling rate decreasing, porosity volume fraction and maximum porosity radius increase, as well as porosity nucleates and starts to grow at higher temperatures. However, the porosity density shows a decreasing trend with the decrease of cooling rate. The competitive growth between different microporosity and dendrites is observed. The porosity nuclei with larger size are able to grow preferentially, while the growth of the small porosity nuclei is inhibited. Because of the effect of gas-liquid surface tension, porosity grows spherically when it is enveloped by liquid. After touching with dendrites, the growth space of porosity is restricted by the complex dendrite network, and thus becomes irregular shape. On the other hand, the growth of dendrite might also be influenced by the nearby porosity. With cooling rate decreasing, the competitive growth between porosities and dendrites becomes more evident, leading to non-uniform porosity size, and more irregular morphology of the porosities with larger size. The simulation results are compared reasonably well with the experimental data.

Key wordsaluminum alloy    numerical modeling    solidification    microporosity    cellular automaton
收稿日期: 2013-02-20     
基金资助:

国家自然科学基金资助项目50971042

作者简介: 李正扬, 男, 1989年生, 硕士生

[1]Zhao L. PhD Dissertation, Southeast University,Nanjing, 2012
(赵磊. 东南大学博士学位论文, 南京, 2012)
[2]Lee P D, Chirazi A, See D. J Light Met, 2001; 1: 15
[3]Lashkari O, Yao L, Cockcroft S, Maijer D. Metall Mater Trans, 2009; 47A: 991
[4]Stefanescu D M, Catalina A V. Int J Cast Met Res,2011; 24: 144
[5]Gui Z L, Dai T, Zhu M F. Spec Cast Nonferrous Alloys, 2007; 27: 766
(桂仲林, 戴挺, 朱鸣芳. 特种铸造及有色合金, 2007; 27: 766)
[6]Stefanescu D M. Int J Cast Met Res, 2005; 18: 129
[7]Ferreira I L, Lins J F C, Moutinho D J, Gomes L G, Garcia A.J Alloys Compd, 2010; 503: 31
[8]Kubo K, Pehlke R D. Metall Trans, 1985; 16B: 359
[9]Zhao H D, Wu C Z, Li Y Y, OHNAKA I. Acta Metall Sin, 2008; 44: 1340
(赵海东, 吴朝忠, 李元元, 大中逸熊. 金属学报, 2008; 44: 1340)
[10]Atwood R C, Sridhar S, Zhang W, Lee P D. Acta Mater, 2000; 48: 405
[11]Lee P D, Chirazi A, Atwood R C, Wang W. Mater Sci Eng, 2004; A365: 57
[12]Dong S Y, Xiong S M, Liu B C. J Mater Sci Technol,2004; 20: 23
[13]Han Z Q, Li J X, Yang W, Zhao H D, Liu B C. Acta Metall Sin, 2011; 44: 7
(韩志强, 李金玺, 杨文, 赵海东, 柳百成. 金属学报, 2011; 44:7)
[14]Sasikumar R, Walker M J, Savithri S, Sundarraj S.Modell Simul Mater Sci Eng, 2008; 16: 035009
[15]Karagadde S, Sundarraj S, Dutta P. Scr Mater,2009; 61: 216
[16]Meidani H, Jacot A. Acta Mater, 2011; 59: 3032
[17]Meidani H, Desbiolles J L, Jacot A, Rappaz M. Acta Mater, 2012; 60: 2518
[18]Wu W, Sun D K, Dai T, Zhu M F. Acta Phys Sin,2012; 61: 150501
(吴伟, 孙东科, 戴挺, 朱鸣芳. 物理学报, 2012; 61:150501)
[19]Wu M W, Xiong S M. Acta Metall Sin, 2010; 46: 1534
(吴孟武, 熊守美. 金属学报, 2010; 46: 1534)
[20]Shi Y F, Xu Q Y, Gong M, Liu B C. Acta Metall Sin,2011; 47: 620
(石玉峰, 许庆彦, 龚铭, 柳百成. 金属学报, 2011; 47: 620)
[21]Shan B W, Huang W D, Lin X, Wei L. Acta Metall Sin, 2008; 44: 1042
(单博炜, 黄卫东, 林鑫, 魏雷. 金属学报, 2008; 44:1042)
[22]Jiang H X, Zhao J Z. Acta Metall Sin, 2011; 47:1099
(江鸿翔, 赵九洲. 金属学报, 2011; 47: 1099)
[23]Zhu M F, Chen J, Sun G X, Hong C P. Acta Metall Sin, 2005; 41: 583
(朱鸣芳, 陈晋, 孙国雄, 洪俊杓. 金属学报, 2005; 41: 583)
[24]Gui Z L. Master Thesis, Southeast University,Nanjing, 2008
(桂仲林.东南大学硕士学位论文, 南京, 2008)
[25]Yao L, Cockcroft S, Reilly C, Zhu J D. Metall Mater Trans, 2012; 43A: 1004
[26]Mitrasinovic A, Hernandez F C R, Djurdjevic M, Sokolowski J H. Mater Sci Eng, 2006; A428: 41
[27]James P A. PhD Dissertation, McGill University,Montreal, Canada, 2000
[28]Lee P D, Hunt J D. Acta Mater, 1997; 45: 4155

[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[5] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[6] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[7] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[8] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[9] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[10] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[11] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[12] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[13] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[14] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[15] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.