Please wait a minute...
金属学报  2013, Vol. 49 Issue (9): 1041-1050    DOI: 10.3724/SP.J.1037.2013.00105
  论文 本期目录 | 过刊浏览 |
DD407/FGH95合金热等静压扩散连接反应层元素互扩展规律: I.扩散连接模型的建
姚瑶1),叶建水1),董建新1),姚志浩1),张麦仓1),国为民2)
1)北京科技大学材料科学与工程学院, 北京100083
2)钢铁研究总院, 北京 100081
ELEMENTS DIFFUSION LAW OF DD407/FGH95 DIFFU-SION BONDING UNDER HOT ISOSTATIC PRESSING: I. Building Diffusion Bonding Model
YAO Yao1), YE Jianshui1), DONG Jianxin1), YAO Zhihao1), ZHANG Maicang1),GUO Weimin2)
1)School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2)Central Iron & Steel Research Institute, Beijing 100081
引用本文:

姚瑶,叶建水,董建新,姚志浩,张麦仓,国为民. DD407/FGH95合金热等静压扩散连接反应层元素互扩展规律: I.扩散连接模型的建[J]. 金属学报, 2013, 49(9): 1041-1050.
YAO Yao, YE Jianshui, DONG Jianxin, YAO Zhihao, ZHANG Maicang, GUO Weimin. ELEMENTS DIFFUSION LAW OF DD407/FGH95 DIFFU-SION BONDING UNDER HOT ISOSTATIC PRESSING: I. Building Diffusion Bonding Model[J]. Acta Metall Sin, 2013, 49(9): 1041-1050.

全文: PDF(1350 KB)  
摘要: 

建立了热等静压扩散连接的数学模型, 利用DICTRA软件与Thermal-Calc软件相结合的方法计算了不同温度、不同时间热等静压扩散连接界面反应层元素的互扩散规律与相分布情况,并根据计算结果给出了建议的扩散连接工艺范围, 为工艺参数的设计提供了理论依据.计算结果表明: 与时间相比, 温度对扩散连接界面的元素扩散影响更大.针对DD407/FGH95合金系, 扩散连接温度应选择在1120—1210℃的温度区间内.综合考虑扩散连接的元素互扩散区宽度及界面元素富集情况,1120℃时扩散连接的合理扩散时间为3—5 h,1170和1210℃时扩散连接的合理扩散时间为1—3 h.

关键词 DD407/FGH95合金DICTRA软件扩散连接热等静压    
Abstract

Turbine platform and blade are two main parts of aero engines and gas turbines.Due to different requirements in practice, platforms are always fabricated by single crystal superalloys, which have high temperature strength and resistance to hot corrosion and oxidation. The platforms employed at relatively lower temperatures can be made of powder superalloys. Therefore there is a great demand for bonding single crystal superalloys to powder superalloys. Because of high content of γ′ forming elements, traditional fusion welding methods employed in bonding the two materials are high susceptibility to cracking. Hot isostatic pressure (HIP) bonding is a preferable technique now to join nickel base superalloys. However, using experimental methods to explore appropriate HIP bonding parameters is time consuming and costly. This work puts forward a calculated method to simulate diffusion process and phase distribution of diffusion couples obtained by HIP diffusion bonding. In this work, the numerical model of HIP diffusion bonding was built, and distribution of elements and phases of DD407/FGH95 diffusion couples under different HIP temperature and bonding time were calculated  with DICTRA and Thermal—Calc software. The simulated results indicated that the appropriate HIP temperature should be chosen between 1120℃ and 1210℃. γ′ in DD407 and FGH95 kept initial concentration under 1120℃ HIP bonding.γ′ in FGH95 began to entirely solute and γ′ in DD407 partly solute under 1170℃ HIP bonding, and under 1210℃ HIP bonding, γ′ in DD407 could solute completely near the interface and partly solute away from the interface. The simulated results also implied that appropriate time for 1120℃ HIP bonding is 3—5 h, 1—3 h for 1170 and 1210℃ HIP bonding.

Key wordsDD407/FGH95 alloy    DICTRA software    diffusion bonding    hot isostatic pressing
收稿日期: 2013-03-04     
基金资助:

国家重点基础研究发展计划资助项目2010CB631200

作者简介: 姚瑶, 女, 1990年生, 硕士生

[1] Mao J, Wang W X, Yang W H.  Aviation Eng Maint, 1997; (2): 2

(毛健, 汪武祥, 杨万宏.航空制造工程, 1997; (2): 2)
[2] Klotz U E, Henderson M B, Wilcock I M, Davies S, Janschek P, Roth M, Casser P, Mccolvin G.  Mater Sci Technol, 2005; 21: 218
[3] Atkinson H V, Davies S.   Metall Mater Tans, 2000; 31A: 2981
[4] Borgenstam A, Engstrom A, Hoglund L, Agren J.  J Phase Equilib, 2000; 21: 269
[5] Larsson H, Hoglund L.   Comput Coupl Phase Diagrams Therm, 2009; 33: 495
[6] Anderson J O, Helander T, Hoglund L, Shi P F, Sundman B.  Calphad, 2002; 26: 273
[7] Tancret F.  Comput Mater Sci, 2007; 41: 13
[8] Ojo O A, Tancret F.  Comput Mater Sci, 2009; 45: 388
[9] He Y L, Li L, Huang S G, Vleugels J, Van der Bies O.   Rare Mater, 2007; 26: 492
[10] Engstrom A, Morral J E, Agren J.  Metall Mater Trans, 1994; 25A: 1127
[11] Jiang C, Jin Z P.  Trans Nonferrous Met Soc China, 2000; 10: 158
[12] Campbell C E, Zhao J C, Henry M F.  J Phase Equilib Diffus, 2004; 25: 6
[13] Larsson H, Enstrom A.  Acta Mater, 2006; 54: 2431
[14] Walter C, Hallstedt B, Warnken N.  Mater Sci Eng, 2005; A397: 385
[15] Dayananda M A.   Metall Trans, 1996; 27A: 2504
[16] Loh N L, Sia K Y.   J Mater Process Technol, 1992; 30: 45
[17] Jiao S Y, Dong J X, Zhang M C, Xie X S.  Mater Eng, 2009; (12): 10
(焦少阳, 董建新, 张麦仓, 谢锡善. 材料工程, 2009; (12): 10)
[18] Chen R Z.  Mater Eng, 1995; (8): 3
(陈荣章. 材料工程, 1995; (8): 3)
[19] Henrik S, Henrik L.  Acta Mater, 2004; 52: 4695
[20] Ashworth M A, Jacobs M H, Davies S.  Mater Des, 2000; 21: 351
[21] Orhan N, Aksoy M, Eroglu M.  Mater Sci Eng, 1999; A271: 458
[22] Peng X K, Heness G, Yeung W Y.  J Mater Sci, 1999; 34: 227
[23] Jia J, Tao Y, Zhang Y W.  J Iron Steel Res, 2011; 23: 510
(贾建, 陶宇, 张义文.钢铁研究学报, 2011; 23: 510)
[24] Yan L C, Yan P, Zhao J C.  Powder Metall Ind, 2012; 22: 21
(闫来成, 燕平, 赵京晨. 粉末冶金工程, 2012; 22: 21)
[25] Yan L C, Sun J H, Yan P, Zhao J C.   J Iron Steel Res, 2000; 12: 31

(阎来成, 孙家华, 燕平, 赵京晨. 钢铁研究学报, 2000; 12: 31)

[1] 徐磊, 田晓生, 吴杰, 卢正冠, 杨锐. 热等静压成形Inconel 718粉末合金的显微组织和力学性能[J]. 金属学报, 2023, 59(5): 693-702.
[2] 化雨, 陈建国, 余黎明, 司永宏, 刘晨曦, 李会军, 刘永长. Cr铁素体耐热钢与奥氏体耐热钢的异种材料扩散连接接头组织演变及力学性能[J]. 金属学报, 2022, 58(2): 141-154.
[3] 赵雷, 王辉, 杨丽霞, 陈学斌, 郎润秋, 贺林峰, 陈东风, 王海舟. Fe-Co-Ni系组合合金热等静压高通量制备方法初探[J]. 金属学报, 2021, 57(12): 1627-1636.
[4] 刘晨曦, 毛春亮, 崔雷, 周晓胜, 余黎明, 刘永长. 低活化铁素体/马氏体钢组织调控及其固相连接研究进展[J]. 金属学报, 2021, 57(11): 1521-1538.
[5] 和思亮, 赵云松, 鲁凡, 张剑, 李龙飞, 冯强. 热等静压对铸态及固溶态第二代镍基单晶高温合金显微缺陷及持久性能的影响[J]. 金属学报, 2020, 56(9): 1195-1205.
[6] 卢正冠,吴杰,徐磊,崔潇潇,杨锐. Ti2AlNb异形粉末环件的轧制成形与性能研究[J]. 金属学报, 2019, 55(6): 729-740.
[7] 徐磊, 郭瑞鹏, 吴杰, 卢正冠, 杨锐. 钛合金粉末热等静压近净成形研究进展[J]. 金属学报, 2018, 54(11): 1537-1552.
[8] 吴杰,徐磊,卢正冠,崔玉友,杨锐. Ti-22Al-24Nb-0.5Mo粉末合金的制备及电子束焊接*[J]. 金属学报, 2016, 52(9): 1070-1078.
[9] 郭瑞鹏,徐磊,程文祥,雷家峰,杨锐. 热等静压参数对Ti-5Al-2.5Sn ELI粉末合金组织与力学性能的影响*[J]. 金属学报, 2016, 52(7): 842-850.
[10] 吴铭方,刘飞,王凤江,乔岩欣. 陶瓷基复合材料辅助脉冲电流液相扩散连接的界面反应及接头强化机制[J]. 金属学报, 2015, 51(9): 1129-1135.
[11] 吴铭方, 匡泓锦, 王凤江, 林红香, 胥国祥. Zr/Cu/Zr部分瞬间液相焊扩散连接Ti(C, N)-Al2O3陶瓷基复合材料*[J]. 金属学报, 2014, 50(5): 619-625.
[12] 姚瑶,董建新,姚志浩,张麦仓, 国为民. DD407/FGH95合金热等静压扩散连接反应层元素互扩展规律:II. 模型验证及实验分析[J]. 金属学报, 2013, 49(9): 1051-1060.
[13] 李少强,陈志勇,王志宏,刘建荣,王清江,杨锐. 一种快速凝固粉末冶金高温钛合金微观组织特征研究[J]. 金属学报, 2013, 29(4): 464-474.
[14] 马文斌,刘国权,胡本芙,贾成厂. 镍基粉末高温合金FGH96中原始粉末颗粒边界的形成机理[J]. 金属学报, 2013, 49(10): 1248-1254.
[15] 吕铮,卢晨阳,张守辉,谢锐,刘春明. 纳米结构14Cr-ODS铁素体钢的制备与微观结构[J]. 金属学报, 2012, 48(6): 649-653.