Please wait a minute...
金属学报  2013, Vol. 49 Issue (7): 804-810    DOI: 10.3724/SP.J.1037.2013.00093
  论文 本期目录 | 过刊浏览 |
考虑小孔演变的等离子弧焊接动态热源模型及验证
 
李岩1),冯妍卉1),张欣欣1), 武传松2)
1)北京科技大学机械工程学院,北京100083
2)山东大学材料液固结构演变与加工教育部重点实验室, 济南250061
A DYNAMIC HEAT SOURCE MODEL WITH RESPECT TO KEYHOLE EVOLUTION IN PLASMA ARC WELDING
LI Yan1), FENG Yanhui1), ZHANG Xinxin 1), WU Chuansong2)
1)School of Mechanical Engineering,University of Science and Technology Beijing, Beijing 100083
2)Key Lab for Liquid-Solid Structure Evolution and Materials Processing (Ministry of Education), ShandongUniversity,Jinan 250061
全文: PDF(5753 KB)  
摘要: 

建立了等离子弧焊接熔池传热、流动和相变的三维数学模型,基于小孔动态演变过程与热源模型的相互耦合作用,研究了焊接熔池内传热和流动的发展过程.开发出随小孔深度动态变化的体积热源模型, 上部采用Gauss平面热源,下部采用耦合小孔增长的动态锥体热源.应用体积流函数(VOF)方法追踪小孔的形状尺寸,并将小孔深度作为热源高度参数调控热源分布,从而实现热源模型与小孔变化的动态耦合,获得等离子弧焊接熔池温度场、流场和小孔的动态演变规律.进行了等离子弧焊接的实验测试,验证了焊件横断面熔池形状尺寸和底部小孔的穿孔形状尺寸.

关键词 等离子弧焊接小孔演变动态热源模型传热流动    
Abstract

Most of the familiar objects in modern society, from buildings and bridges, to vehicles, computers, and medical devices, could not be produced without the use of welding. Especially, with the rising development of advanced manufacturing industry, such as aircraft and aerospace industries, shipbuilding and marine industries and automotive industries, cost-effective high-efficiency high-quality welding processes are being progressively required for increasing performance requirements and enhancements in product quality. Thus, the plasma arc welding (PAW) provides a means for these process demands by using a high power density heat source. The keyhole effect is commonly recognized as the primary attribute to the deep-penetration welding. Compared to electron beam welding and laser welding, PAW is more cost effective and more tolerant of joint gaps and misalignment. However, the mechanism of keyhole formation in PAW process differs from that in other high power density welding processes. In PAW the keyhole is produced and maintained mainly by the pressure of the plasma arc, rather than by the recoil pressure of the evaporating metal in electron beam and laser welding. Considerable research has been focused on keyhole tracking and effective heat source models for PAW process. However, the existing models rarely can present the transient influences of the keyhole evolution on heat transfer and fluid flow in the weld pool. In this work, a three dimensional PAW model was established with the interaction between heat source and keyhole evolution considered. A combined heat source model was proposed to account for the transient energy propagation.It consists of a Gaussian heat flux model on the top surface and below a dynamic developing conical heat source, which continues rising in the wake of the keyhole growth. Volume of Fluid (VOF) method was applied to track the dynamic keyhole shapes, and the transient height of heat source model was simultaneously updated with the increasing keyhole depth. The transient evolution of heat density distribution concerning the keyholing effect was analyzed in details, and the corresponding temperature field was calculated and displayed to reveal the mechanism of heat transfer in the weld pool. The keyhole process and molten metal flow in the weld pool was also investigated. Finally, experiment was carried out on a stainless steel plate with thickness 6 mm, and the calculated results showed good agreement with the experimental data. It validated the mathematical model and the applicability of the dynamic heat source, which provides an insight into the understanding of the thermal process in the keyhole of PAW.

Key wordsplasma arc welding    keyhole evolution    dynamic heat source model    heat transfer    fluid flow
收稿日期: 2013-02-15     
基金资助:

国家自然科学基金重点资助项目50936003

通讯作者: 冯研卉     E-mail: yhfeng@me.ustb.edu.cn
作者简介: 李岩, 男, 1988年生, 博士生

引用本文:

李岩,冯妍卉,张欣欣, 武传松. 考虑小孔演变的等离子弧焊接动态热源模型及验证[J]. 金属学报, 2013, 49(7): 804-810.
LI Yan, FENG Yanhui, ZHANG Xinxin, WU Chuansong. A DYNAMIC HEAT SOURCE MODEL WITH RESPECT TO KEYHOLE EVOLUTION IN PLASMA ARC WELDING. Acta Metall Sin, 2013, 49(7): 804-810.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00093      或      https://www.ams.org.cn/CN/Y2013/V49/I7/804

[1]Lucas W. Proc 8th Int Welding Symposium, Osaka:Japan Welding Society, 2008: 189
[2]Metcalfe J C, Quigley M B C. Weld J, 1975; 54:99-s
[3]Hsu Y F, Rubinsky B. Int J Heat Mass Transfer,1988; 31: 1409
[4]Keanini R G, Rubinsky B. Int J Heat Mass Transfer,1993; 36: 3283
[5]Nehad A K. Int Commun Heat Mass Transfer, 1995; 22:779
[6]Wu C S, Wang H G, Zhang Y M. Weld J, 2006; 85:284-s
[7]Wu C S, Wang H G, Zhang M X. Acta Metall Sin, 2006;42: 311
(武传松, 王怀刚, 张明贤. 金属学报, 2006; 42: 311)
[8]Wu C S, Hu Q X, Gao J Q. Comput Mater Sci, 2009;46: 167
[9]Sun J H, Wu C S, Qin G L. Acta Metall Sin, 2011;47: 1061
(孙俊华, 武传松, 秦国梁. 金属学报, 2011; 47: 1061)
[10]Li Y, Feng Y H, Zhang X X, Wu C S. Int J Therm Sci, 2013; 64: 93
[11]Fan H G, Kovacevic R. J Phys, 1999; 32D: 2902
[12]Zhang T, Wu C S, Feng Y H. Numer Heat Transfer,2011; 60A: 685
[13]Zhang T, Wu C S, Chen M A. Acta Metall Sin, 2012;48: 1025
(张涛, 武传松, 陈茂爱. 金属学报, 2012; 48: 1025)
[14]Wu C S, Zhang T, Feng Y H. Int J Heat Fluid Flow,2013; 40: 186
[15]Wang X J, Wu C S, Chen M A. Acta Metall Sin, 2010;46: 984
(王小杰, 武传松, 陈茂爱. 金属学报, 2010; 46: 984)
[16]Li T Q, Wu C S, Feng Y H, Zheng L C. Int J Heat Fluid Flow, 2012; 34: 117
[17]Huo Y S, Wu C S, Chen M A. Acta Metall Sin, 2011;47: 706
(霍玉双, 武传松, 陈茂爱. 金属学报, 2011; 47: 706)
[18]Sun J H, Wu C S, Feng Y H. Int J Therm Sci, 2011;50: 1664
[19]Jia C B, Wu C S, Zhang Y M. Trans Nonferrous Met Soc China, 2009; 19: 341
[20]Hirt C W, Nichols B D. J Comput Phys, 1981; 39:201
[21]Huo Y H, Wu C S. China Weld, 2009; 18: 12
[22]Sahoo P, Debroy T, McNallan M. Metall Mater Trans,1988; 19B: 483
[23]Wu C S. Welding Thermal Processes and Weld Pool Behaviors. Beijing: China Machine Press, 2008: 79
(武传松. 焊接热过程与熔池形态. 北京: 机械工业出版社, 2008: 79)
[24]Issa R I. J Comptut Phys, 1986; 62: 40
[25]Ubbink O. PhD Dissertation, London: Imperial
College of Science, 1997

[1] 郭祥如, 孙朝阳, 王春晖, 钱凌云, 刘凤仙. 基于三维离散位错动力学的fcc结构单晶压缩应变率效应研究[J]. 金属学报, 2018, 54(9): 1322-1332.
[2] 熊守美, 杜经莲, 郭志鹏, 杨满红, 吴孟武, 毕成, 曹永友. 镁合金压铸过程界面传热行为及凝固组织结构的表征与模拟研究[J]. 金属学报, 2018, 54(2): 174-192.
[3] 种晓宇, 汪广驰, 杜军, 蒋业华, 冯晶. ZTAp/HCCI复合材料凝固过程中的温度场和热应力的数值模拟[J]. 金属学报, 2018, 54(2): 314-324.
[4] 武传松, 宿浩, 石磊. 搅拌摩擦焊接产热传热过程与材料流动的数值模拟[J]. 金属学报, 2018, 54(2): 265-277.
[5] 菅晓霞,武传松. e蒸气对等离子弧焊接熔池行为的影响*[J]. 金属学报, 2016, 52(11): 1467-1476.
[6] 胥国祥, 张卫卫, 刘朋, 杜宝帅. 激光+GMAW复合热源焊熔池流体流动的数值分析*[J]. 金属学报, 2015, 51(6): 713-723.
[7] 王新鑫, 樊丁, 黄健康, 黄勇. 双钨极TIG电弧-熔池传热与流动数值模拟*[J]. 金属学报, 2015, 51(2): 178-190.
[8] 裴莹蕾,吴爱萍,单际国,任家烈. 基于熔池流动分析的高速激光焊驼峰焊道形成过程研究[J]. 金属学报, 2013, 49(6): 725-730.
[9] 温道胜,宗影影,徐文臣,杨单媚,单德彬. 0.037%H对铸态Ti-45Al-5Nb-0.8Mo-0.3Y合金高温变形行为的影响[J]. 金属学报, 2013, 49(11): 1428-1432.
[10] 龙琼,钟云波,李甫,刘春梅,周俊峰,范丽君,李明杰. 稳恒磁场对Fe-Si复合电镀层形貌及Si含量的影响[J]. 金属学报, 2013, 49(10): 1201-1210.
[11] 庞瑞朋,王福明,张国庆,李长荣. 基于3D-CAFE法对430铁素体不锈钢凝固热参数的研究[J]. 金属学报, 2013, 49(10): 1234-1242.
[12] 贾皓 张振强 于湛 邓康 雷作胜 任忠鸣. FC Mold II电磁制动中磁场匹配对金属液流影响[J]. 金属学报, 2012, 48(9): 1049-1056.
[13] 张涛 武传松 陈茂爱. 穿孔等离子弧焊接熔池流动和传热过程的数值模拟[J]. 金属学报, 2012, 48(9): 1025-1032.
[14] 孙朝阳 栾京东 刘赓 李瑞 张清东. AZ31镁合金热变形流动应力预测模型[J]. 金属学报, 2012, 48(7): 853-860.
[15] 裴莹蕾 单际国 任家烈. 不锈钢薄板高速激光焊驼峰焊道形成倾向及其影响因素[J]. 金属学报, 2012, 48(12): 1431-1436.