Please wait a minute...
金属学报  2015, Vol. 51 Issue (6): 713-723    DOI: 10.11900/0412.1961.2014.00464
  论文 本期目录 | 过刊浏览 |
激光+GMAW复合热源焊熔池流体流动的数值分析*
胥国祥1(),张卫卫1,刘朋1,杜宝帅2
1 江苏科技大学江苏省先进焊接技术重点实验室, 镇江 212003
2 山东电力研究院, 济南 250002
NUMERICAL ANALYSIS OF FLUID FLOW IN LASER+GMAW HYBRID WELDING
Guoxiang XU1(),Weiwei ZHANG1,Peng LIU1,Baoshuai DU2
1 Key Laboratory of Advanced Welding Technology of Jiangsu Province, Jiangsu University of Science and Technology, Zhenjiang 212003
2 Shandong Electric Power Institute, Jinan 250062
引用本文:

胥国祥, 张卫卫, 刘朋, 杜宝帅. 激光+GMAW复合热源焊熔池流体流动的数值分析*[J]. 金属学报, 2015, 51(6): 713-723.
Guoxiang XU, Weiwei ZHANG, Peng LIU, Baoshuai DU. NUMERICAL ANALYSIS OF FLUID FLOW IN LASER+GMAW HYBRID WELDING[J]. Acta Metall Sin, 2015, 51(6): 713-723.

全文: PDF(6362 KB)   HTML
摘要: 

考虑熔滴和小孔对熔池的影响, 建立了基于FLUENT软件的激光+熔化极电弧(GMAW)复合热源焊三维瞬态熔池流体流动数值分析模型. 利用双椭球体热源描述电弧热输入, 将激光热输入视为热流峰值可调节的双曲线旋转体热源, 其热源分布参数通过简化的小孔形状尺寸模型确定; 将熔滴过渡过程视为从熔池上部特定区域流入熔池高温液态金属的过程, 并通过建立液态金属流速对时间的周期函数表征熔滴过渡频率; 将小孔视为由激光致蒸汽反作用力引起的熔池表面变形, 以简化计算过程, 重点考虑小孔的存在对熔池流体流态的主要影响. 利用所建模型对不同焊接条件下的激光+GMAW复合热源焊小孔形态、熔池流体流动和温度场进行模拟计算, 分析了激光+GMAW复合热源焊流场特征, 探讨了激光功率对复合焊熔池动态行为的影响规律. 结果表明, 在1 m/min 焊速条件下, GMAW焊(激光功率为0 W)出现驼峰缺陷; 当激光功率为500 W时, 驼峰缺陷消失, 但熔池中无小孔产生, 且流体流动模式与GMAW焊相近; 而当激光功率增至2000 W, 熔池中出现小孔, 使得流体流动模式更为复杂. 将焊缝横断面形状尺寸的计算结果与实验结果进行比较, 2者吻合较好, 从而证明了模型的准确性和适用性.

关键词 复合焊熔池流体流动小孔数值模拟    
Abstract

Laser+gas metal arc welding(GMAW) hybrid welding fully combines the merits of both laser welding and GMAW, which can achieve high quality, high efficiency and comparatively low-cost welding of thin and thick plate, thus having great application prospect in manufacturing industry. However, compared with single heat source welding, hybrid welding involves more welding parameters and more complicated physical process, leading to difficult process optimization. When mismatching the process parameters, welding defects can still appear in high-speed welding, which affects the reliability of hybrid welding. Therefore, it is necessary to study the physical mechanism in hybrid welding deeply for suppressing welding defects and improving welding stability. In hybrid welding, fluid flow in weld pool has a critical influence on the weld formation. So, modeling and simulating the fluid flow is helpful for understanding the process mechanism completely. To date, however, there is only little study on velocity field in hybrid welding due to its complexity. In this work, with considering the effects of droplet and keyhole on weld pool, a three dimensional transient model is developed to numerically analyze fluid flow in weld pool of laser+GMAW hybrid welding based on FLUENT software. Arc heat input is modeled using an double-ellipsoid heat source; laser heat input is regarded as a hyperbolic curve-rotated heat source with changing peak power density, its distribution parameters being determined based on the simplified model for keyhole geometry and size. Droplet transfer is described as the process of high temperature liquid metal flowing into weld pool from the certain domain above the weld pool. Using the built model, the keyhole behavior, fluid flow and temperature distribution in laser+GMAW hybrid welding under different welding conditions are calculated. The features of velocity field in hybrid welding are analyzed and the effect of laser power on the weld pool dynamic behavior is discussed. The results show that, in the case of 1 m/min, weld bead hump is generated in single GMAW (laser power 0 W); when laser power is 500 W, bead hump disappears in welding, but there is no keyhole emerging in hybrid weld pool and fluid flow pattern is close to that in GMAW. When increasing laser power to 2000 W, keyhole is formed, which makes the fluid flow in weld pool more complicated. The predicted weld geometries and dimensions for varied laser powers are compared with the measured data, which are in good agreement, thereby indicating accuracy and applicability of the established model.

Key wordshybrid welding    weld pool    fluid flow    keyhole    numerical simulation
    
基金资助:*国家自然科学基金项目51105182和江苏省先进焊接技术重点实验室开放基金项目10622010101资助
图1  激光+熔化极电弧(GMAW)复合热源焊示意图
图2  求解区域的几何模型
图3  不同时刻GMAW焊熔池纵截面的温度场和流场分布
图4  GMAW焊缝上表面的实验和计算结果
图5  不同时刻GMAW焊熔池横截面的温度场及流场分布
图6  激光功率为500 W时不同时刻复合焊熔池纵截面的温度场和流场分布
图7  激光功率为500 W时不同时刻复合焊熔池横截面温度场和流场分布
图8  激光功率为2000 W时不同时刻复合焊熔池纵截面的温度场和流场分布
图9  激光功率为2000 W时不同时刻复合焊熔池横截面的温度场和流场分布
图10  激光功率为500 W, 焊接速率为2 m/min时复合焊熔池纵截面的温度场和流场分布
图11  复合焊焊缝上表面实验与计算结果的比较
图12  复合焊焊缝横截面实验和计算结果的比较
[1] Defalco J. Weld J, 2007; 86(10): 47
[2] Graf T, Staufer H. Weld J, 2003; 82(1): 42
[3] Staufer H. Weld J, 2007; 86(10): 36
[4] Bagger C, Olsen F O. J Laser Appl, 2005; 17: 2
[5] Mahrle A, Beyer E. J Laser Appl, 2006; 18: 169
[6] Gao M, Zeng X Y, Hu Q W, Yan J. Trans China Weld Inst, 2008; 29(6): 85 (高 明, 曾晓雁, 胡乾午, 严 军. 焊接学报, 2008; 29(6): 85)
[7] Wu C S. Thermal Process and Weld Pool Behavior. Beijing: China Machine Press, 2007: 5 (武传松. 焊接热过程与熔池形态. 北京: 机械工业出版社, 2007: 5)
[8] Cho M H, Farson D F. Weld J, 2007; 86(9): 253
[9] Le Guen E, Fabbro R, Carin M, Coste F, Le Masson P. Opt Laser Technol, 2011; 43: 1155
[10] Bendaoud I, Matte? S, Cicala E, Tomashchuk I, Andrzejewski H. Opt Laser Technol, 2014; 56: 334
[11] Atabaki M M, Nikodinovski P, Chenier P, Liu W, Kovacevic R. Opt Laser Technol, 2014; 59: 68
[12] Xu G X, Wu C S, Qin G L, Wang X Y. Acta Metall Sin, 2012; 48: 1033 (胥国祥, 武传松, 秦国梁, 王旭友. 金属学报, 2012; 48: 1033)
[13] Xu G X, Wu C S, Qin G L, Ou H L. China Weld, 2011; 20(1): 22
[14] Xu G X, Wu C S, Qin G L, Wang X Y, Lin S Y. J Eng Manuf, 2011; 225: 528
[15] Xu G X, Wu C S, Qin G L, Wang X Y, Lin S Y. Int J Adv Manuf Technol, 2011; 57: 245
[16] Xu G X, Wu C S, Qin G L, Wang X Y, Lin S Y. Acta Metall Sin, 2009; 45: 107 (胥国祥, 武传松, 秦国梁, 王旭友, 林尚扬. 金属学报, 2009; 45: 107)
[17] Zhang Z Z, Xu G X, Wu C S. Acta Metall Sin, 2011; 47: 1045 (张转转, 胥国祥, 武传松. 金属学报, 2011; 47: 1045)
[18] Kong F R, Ma J J, Kovacevic R. J Mater Process Technol, 2011; 211: 1102
[19] Xu G X, Wu C S, Qin G L, Wang X Y. Acta Metall Sin (Engl Lett), 2013; 26: 352
[20] Zhang T, Wu C S, Qin G L, Wang X Y, Lin S Y. Comput Mater Sci, 2010; 47: 848
[21] Cho J H, Na S J. Weld J, 2009; 88(2): 35
[22] Cho I W, Na S J, Cho M H, Lee J S. Comput Master Sci, 2010; 49: 172
[23] Zhou J, Tsai H L. Int J Heat Mass Trans, 2008; 51: 4353
[24] Wang R P. PhD Dissertation, Beijing University of Technology, 2011 (汪任凭. 北京工业大学博士学位论文, 2011)
[25] Gao Z G. PhD Dissertation, Shanghai Jiaotong University, 2009 (高志国. 上海交通大学博士学位论文, 2009)
[26] Zhang T, Wu C S, Feng Y H. Numerical Heat Transfer, 2011; 60A: 685
[27] Voller V R, Prakash C. Int J Heat Mass Transfer, 1987; 30: 1709
[28] Jin X Z, Peter B, Thomas G. J Phys, 2006; 39D: 4703
[29] Semak V V, Matsunawa A. J Phys, 1997; 809D: 30
[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[5] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[6] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[7] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.
[8] 杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.
[9] 王富强, 刘伟, 王兆文. 铝电解槽中局部阴极电流增大对电解质-铝液两相流场的影响[J]. 金属学报, 2020, 56(7): 1047-1056.
[10] 刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759.
[11] 王波,沈诗怡,阮琰炜,程淑勇,彭望君,张捷宇. 冶金过程中的气液两相流模拟[J]. 金属学报, 2020, 56(4): 619-632.
[12] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[13] 戴培元,胡兴,逯世杰,王义峰,邓德安. 尺寸因素对2D轴对称模型计算不锈钢管焊接残余应力精度的影响[J]. 金属学报, 2019, 55(8): 1058-1066.
[14] 张清东, 林潇, 刘吉阳, 胡树山. Q&P钢热处理过程有限元法数值模拟模型研究[J]. 金属学报, 2019, 55(12): 1569-1580.
[15] 逯世杰, 王虎, 戴培元, 邓德安. 蠕变对焊后热处理残余应力预测精度和计算效率的影响[J]. 金属学报, 2019, 55(12): 1581-1592.