" /> 多晶NiTi形状记忆合金相变的细观力学本构模型
Please wait a minute...
金属学报  2013, Vol. 49 Issue (1): 123-128    DOI: 10.3724/SP.J.1037.2012.00319
  论文 本期目录 | 过刊浏览 |
多晶NiTi形状记忆合金相变的细观力学本构模型
朱祎国1,2,张杨1,2,赵聃1,2
1. 大连理工大学运载工程与力学学部工程力学系, 大连 116023
2. 大连理工大学工业装备结构分析国家重点实验室, 大连116023
MICROMECHANICAL CONSTITUTIVE MODEL FOR PHASE TRANSFORMATION OF NiTi POLYCRYSTAL SMA
 
ZHU Yiguo 1,2, ZHANG Yang1,2, ZHAO Dan1,2
1. Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, Dalian 116023
2. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116023
引用本文:

朱祎国,张杨,赵聃. 多晶NiTi形状记忆合金相变的细观力学本构模型[J]. 金属学报, 2013, 49(1): 123-128.
ZHU Yiguo, ZHANG Yang, ZHAO Dan. MICROMECHANICAL CONSTITUTIVE MODEL FOR PHASE TRANSFORMATION OF NiTi POLYCRYSTAL SMA

 
[J]. Acta Metall Sin, 2013, 49(1): 123-128.

全文: PDF(663 KB)  
摘要: 

假设NiTi单晶在相变过程中具有层状的微观结构及理想的界面连续条件, 推导出各相微观量与宏观量之间的关系, 及相变驱动力的表达式, 建立了单晶相变的控制方程, 从而得到单晶的本构模型. 以此为基础, 利用Tayloy假设, 建立了NiTi多晶的本构模型. 通过控制应变进行加载, 数值模拟了恒温条件下具有{111}织构的NiTi合金的力学响应, 得到的应力-应变曲线与实验结果吻合较好. 利用模拟结果讨论了拉伸与压缩的不对称性、软化和温度对NiTi合金变形的影响.

关键词 NiTi多晶形状记忆合金相变超弹性本构模型    
Abstract

Shape memory alloys (SMAs) are new functional material featured by the excellent properties including shape memory effect and superelasticity. NiTi SMAs have some important implications in avitation, medical device,etc. The main objective of this work is to derive a simple Taylor model for NiTi polycrystal.By the assumption of laminated microstructure and perfect interfacial relationship for NiTi single crystal transformation, microscopic strain for each phase can be transformed to overall strain of respective volume element, and expression of phase transformation driving force is derived, then control equation of phase transformation is constructed. Based on the single crystal model, the NiTi polycrystal constitutive model is constructed by Taylor assumption. The model is used to simulate the mechanical response of NiTi polycrystal alloys with strong {111} texture, the results are in agreement with those observed experimentally. The predicted result of NiTi alloy with strong texture shows asymmetry of tension and compression. Simulation results behave softening as the free energy function is non-convex during phase transformation. Transformation stress level rises as temperature is raised. 

Key words
收稿日期: 2012-05-31     
基金资助:

 

国家自然科学基金项目10602011和10925209及教育部长江学者创新团队计划项目IRT1110资助
作者简介: 朱祎国, 男, 1972年生, 副教授, 博士

 


[1] Tanaka K. Res Mech, 1986; 18: 251

[2] Liang C, Rogers C. J Intell Mater Syst Strut, 1990; 1: 207

[3] Boyd J, Lagoudas D C. J Intell Mater Syst Strut, 1994; 5: 333

[4] Lagoudas D, Hartl D, Chemisky Y, Machado L, Popov P. Int J Plast, 2012; 32--33: 155

[5] Boyd J, Lagoudas D C. Int J Plast, 1996; 12: 805

[6] Lexcellent C, Leclerq S, Gabry B, Bourbon G. Int J Plast, 2000; 16: 1155

[7] Auricchio F, Reali A, Stefanelli U. Int J Plast, 2007; 23: 207

[8] Zaki W, Moumni Z. J Mech Phys Solids, 2007; 55: 2427

[9] Arghavani J, Auricchio F, Naghdabadi R. Int J Plast, 2011; 27: 940

[10] Sun Q P, Hwang K C. J Mech Phys Solids, 1993; 41: 1

[11] Sun Q P, Hwang K C. J Mech Phys Solids, 1993; 41: 19

[12] Patoor E, Eberhardt A, Berveiller M. J Phys IV, 1996; 6: 277

[13] Gao X, Brinson L C. J Intell Mater Syst Struct, 2002; 13: 795

[14] Thamburaja P, Anand L. J Mech Phys Solids, 2001; 49: 709

[15] Thamburaja P. J Mech Phys Solids, 2005; 53: 825

[16] Peng X, Pi W, Fan J. Int J Plast, 2008; 24: 966

[17] Manchiraju S, Gaydosh D, Benafan O, Noebe R, Vaidyanathan R, Anderson P M. Acta Mater, 2011; 59: 5238

[18] Wang X, Xu B, Yue Z F. Int J Plast, 2008; 24: 1307

[19] Levitas V I, Ozsoy I B. Int J Plast, 2009; 25: 239

[20] Levitas V I, Ozsoy I B. Int J Plast, 2009; 25: 546

[21] Stupkiewicz S, Petryk H. J Mech Phys Solids, 2002; 50: 2303

[22] Patoor E, Lagoudas D C, Entchev P B, Brinson L C, Gao X J. Mech Mater, 2006; 38: 391

[23] Zhu Y G, Zhao D. Acta Mech Sin, 2011; 43: 1117

(朱祎国,赵聃. 力学学报, 2011; 43: 1117)

[24] Brill T, Mittelbach S, Assmus W, Mullner M, Luthit B. J Phys: Condens Matter, 1991; 12: 9621

[25] Shaw J, Kyriakides S. J Mech Phys Solids, 1995; 43: 1243

[26] Feng P, Sun Q P. J Mech Phys Solids, 2006; 54: 1568

 
[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[3] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[4] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[5] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[6] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[7] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[8] 陈斐, 邱鹏程, 刘洋, 孙兵兵, 赵海生, 沈强. 原位激光定向能量沉积NiTi形状记忆合金的微观结构和力学性能[J]. 金属学报, 2023, 59(1): 180-190.
[9] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[10] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[11] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[12] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[13] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[14] 杨平, 王金华, 马丹丹, 庞树芳, 崔凤娥. 成分对真空脱锰法相变控制高硅电工钢{100}织构的影响[J]. 金属学报, 2022, 58(10): 1261-1270.
[15] 胡标, 张华清, 张金, 杨明军, 杜勇, 赵冬冬. 界面热力学与晶界相图的研究进展[J]. 金属学报, 2021, 57(9): 1199-1214.