Please wait a minute...
金属学报  2012, Vol. 48 Issue (10): 1186-1193    DOI: 10.3724/SP.J.1037.2012.00340
  论文 本期目录 | 过刊浏览 |
回火温度对42CrMo钢冲击韧性的影响
陈俊丹,莫文林,王培,陆善平
中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016
EFFECTS OF TEMPERING TEMPERATURE ON THE IMPACT TOUGHNESS OF STEEL 42CrMo
CHEN Jundan, MO Wenlin, WANG Pei, LU Shanping
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

陈俊丹 莫文林 王培 陆善平. 回火温度对42CrMo钢冲击韧性的影响[J]. 金属学报, 2012, 48(10): 1186-1193.
CHEN Jundan MO Wenlin WANG Pei LU Shanping. EFFECTS OF TEMPERING TEMPERATURE ON THE IMPACT TOUGHNESS OF STEEL 42CrMo[J]. Acta Metall Sin, 2012, 48(10): 1186-1193.

全文: PDF(4539 KB)  
摘要: 

以核电站环形起重机用42CrMo耐热钢为研究对象, 分析了显微组织中碳化物形貌和分布随回火温度的变化及其对冲击韧性的影响.结果表明, 42CrMo钢经水淬后在500-650 ℃区间回火, 显微组织均为回火索氏体.随回火温度上升, -12 ℃冲击功先增加后减小; 经500和530 ℃回火后, 片状碳化物不均匀分布于原马氏体板条界上, 冲击功分别为26和44 J; 600 ℃回火后碳化物呈颗粒状弥散分布, 冲击功达到峰值104 J; 600 ℃以上回火, 颗粒状碳化物明显粗化,冲击功下降.碳化物的形貌和分布是影响42CrMo钢冲击性能的关键因素.

关键词 回火温度 42CrMo钢 冲击功 碳化物    
Abstract

42CrMo heat–resistant steel is a kind of structural steel, which is widely used in structural components such as crane weight–on–wheel, automobile crank shaft, locomotive gear hub and so on, for its good hardening ability, high temperature strength, good creep resistance, and little quenching deformation. However, in industry application, mismatching between the strength and the toughness always occurs for 42CrMo structure components. In order to solve the problem that the strength does not match the toughness in the manufacturing process for the polar crane for the nuclear power station, the effect of tempering temperature on the morphology and distribution of carbides and the impact toughness has been investigated for steel 42CrMo in this study. The experimental results indicated that the microstructure of the quenched steel 42CrMo after 500—650 ℃ tempering was characterized by tempering sorbite. As the tempering temperature increased, the Charpy absorbed energy at –12℃ initially increased and then decreased. The flake carbides after 500 and 530 ℃ tempering are not evenly distributed on the original martensite boundaries, the Charpy absorbed energy are 26 and 44 J, respectively. While the granular carbides are evenly distributed in the microstructure after 600℃ tempering, the Charpy absorbed energy reaches a maximum value of 104 J. When the tempering temperature is higher than 600 ℃, granular carbides coarsened obviously and the Charpy absorbed energy reduced notably. The morphology and distribution of carbides is the key factor that influences the impact toughness of steel 42CrMo. Morphology and structure analysis for the carbide was carried out by TEM together with EDS analysis, the results showed that the carbide after tempering treatment is (Fe, M)3C and Fe, Cr, Mo are the main alloy element in the carbide. When the tempering temperature is in the range of 560—600 ℃, the uniformly–distributed granular carides forms on the matrix and the impact toughness is over 60 J. As the tempering temperature continues increasing, the carbides will coarsen and the impact toughness will decrease. In order to obtain the good strength and toughness matching, for 42CrMo structure, it is recommended that the tempering temperature should be in the range of 550—590 ℃.

Key wordstempering temperature    steel 42CrMo    Charpy absorbed energy    carbide
收稿日期: 2012-06-08     
ZTFLH:  TG161  
基金资助:

辽宁省科学技术计划资助项目2010224008

作者简介: 陈俊丹, 女, 1987年生, 硕士生

[1] Li B. Master Dissertation, Shanghai Jiao Tong University, 2007

(李波. 上海交通大学硕士学位论文, 2007)

[2] Gong B Z. Hoisting Conveying Mach, 2002; (2): 9

(宫本智. 起重运输机械, 2002; (2): 9)

[3] Zhang Q F. Hoisting Conveying Mach, 2011; (3): 26

(张全福. 起重运输机械, 2011; (3): 26)

[4] Quan G Z, Li G S, Chen T, Wang W X, Zhang Y W, Zhou J. Mater Sci Eng, 2011; A528: 4643

[5] Holzapfel H, Schulze V, V¨ohringer O, Macherauch E. Mater Sci Eng, 1998; A248: 9

[6] Sarioglu F. Mater Sci Eng, 2001; A315: 98

[7] Lin Y C, Chen M S, Zhong J. Mech Res Commun, 2008; 35: 142

[8] Ge Y S, Wang C H, Meng H Z, Lu Z Y. Heavy Cast Forg, 2005; (2): 27

(葛永胜, 王成辉, 孟焕紫, 路振英. 大型铸锻件, 2005; (2): 27)

[9] Zhao L P, Liu Z C, Yang H, Feng D C. Spec Steel, 2004; 25(4): 21

(赵莉萍, 刘宗昌, 杨慧, 冯佃臣. 特殊钢, 2004; 25(4): 21)

[10] Liu D Z, Li Y F. Heat Treat Technol Equip, 2008; 29(3): 74

(刘多智, 李延峰. 热处理技术与装备, 2008; 29(3): 74)

[11] Gu J J, Qin Y Q, Chen Z L, Lu Q H. Hot Working Technol, 2010; 39(22): 160

(顾俊杰, 秦优琼, 陈志林, 卢庆华. 热加工工艺, 2010; 39(22): 160)

[12] Chu J H, Liu S Y. Heavy Cast Forg, 2007; (4): 6

(褚锦辉, 刘时雨. 大型铸锻件, 2007; (4): 6)

[13] Wang M L, Wang J, Wang L X. Bearing, 2009; (12): 37

(王明礼, 王建, 王丽霞. 轴承, 2009; (12): 37)

[14] Li J, Chen Z W, Liu D K. Heavy Cast Forg, 2000; (4): 25

(李进, 陈增武, 刘定坤. 大型铸锻件, 2000; (4): 25)

[15] Wang X T, Yao Y L, Shao T H. Acta Metall Sin, 1990; 26(6): 40

(王笑天, 姚引良, 邵谭华. 金属学报, 1990; 26(6): 40)

[16] Dhua S K, Ray A, Sarma D S. Mater Sci Eng, 2001; A318: 197

[17] Liu D Y, Xu H, Yang K, Bai B Z, Fang H S. Acta Metall Sin, 2004; 40: 882

(刘东雨, 徐鸿, 杨昆, 白秉哲, 方鸿生. 金属学报, 2004; 40: 882)

[18] Gao G H, Zhang H, Bai B Z. Acta Metall Sin, 2011; 47: 513

(高古辉, 张寒, 白秉哲. 金属学报, 2011; 47: 513)

[19] Zhang C Y, Wang Q F, Ren J X, Li R X, Wang M Z, Zhang F C, Yan Z S. Mater Des, 2012; 36: 220

[20] Zhang P, Zhang F C, Wang T S. Acta Metall Sin, 2011; 47: 1038

(张朋, 张福成, 王天生. 金属学报, 2011; 47: 1038)

[21] Wang R F, Xu K, Xue G. Hot Work Technol, 2007; 36(16): 43

(王任甫, 徐科, 薛钢. 热加工工艺, 2007; 36(16): 43)

[22] Bakhtiari R, Ekrami A. Mater Sci Eng, 2009; A525: 159

[23] Cui Y X, Wang C L. Fracture Analysis. Harbin: Harbin Institute of Technology Press, 1998: 73

(崔约贤, 王常利. 金属断口分析. 哈尔滨: 哈尔滨工业大学出版社, 1998: 73)

[24] Wang P, Lu S P, Xiao N M, Li D Z, Li Y Y. Mater Sci Eng, 2010; A527: 3210

[25] Beachem C D. Metall Trans, 1975; 6A: 377

[1] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[2] 李闪闪, 陈云, 巩桐兆, 陈星秋, 傅排先, 李殿中. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响[J]. 金属学报, 2022, 58(8): 1024-1034.
[3] 周成, 赵坦, 叶其斌, 田勇, 王昭东, 高秀华. 回火温度对1000 MPaNiCrMoV低碳合金钢微观组织和低温韧性的影响[J]. 金属学报, 2022, 58(12): 1557-1569.
[4] 张守清, 胡小锋, 杜瑜宾, 姜海昌, 庞辉勇, 戎利建. 海洋平台用Ni-Cr-Mo-B超厚钢板的截面效应[J]. 金属学报, 2020, 56(9): 1227-1238.
[5] 王占花, 惠卫军, 谢志奇, 张永健, 赵晓丽. 回火对钒钛微合金化Mn-Cr系贝氏体型非调质钢组织和性能的影响[J]. 金属学报, 2020, 56(11): 1441-1451.
[6] 吕超然, 徐乐, 史超, 刘进德, 蒋伟斌, 王毛球. Al42CrMo螺栓钢淬透性及组织的影响[J]. 金属学报, 2020, 56(10): 1324-1334.
[7] 杜瑜宾, 胡小锋, 张守清, 宋元元, 姜海昌, 戎利建. 1.4%CuHSLA钢的组织和力学性能[J]. 金属学报, 2020, 56(10): 1343-1354.
[8] 杨柯,梁烨,严伟,单以银. (9~12)%Cr马氏体耐热钢中微量B元素的择优分布行为及其对微观组织与力学性能的影响[J]. 金属学报, 2020, 56(1): 53-65.
[9] 李嘉荣,谢洪吉,韩梅,刘世忠. 第二代单晶高温合金高周疲劳行为研究[J]. 金属学报, 2019, 55(9): 1195-1203.
[10] 董福涛,薛飞,田亚强,陈连生,杜林秀,刘相华. 退火温度对TWIP钢组织性能和氢致脆性的影响[J]. 金属学报, 2019, 55(6): 792-800.
[11] 黄宇, 成国光, 李世健, 代卫星. Ce微合金化H13钢中一次碳化物的析出机理及热稳定性研究[J]. 金属学报, 2019, 55(12): 1487-1494.
[12] 潘栋, 赵宇光, 徐晓峰, 王艺橦, 江文强, 鞠虹. 高能瞬时电脉冲处理对42CrMo钢组织与性能的影响[J]. 金属学报, 2018, 54(9): 1245-1252.
[13] 张涛, 严玮, 谢卓明, 苗澍, 杨俊峰, 王先平, 方前锋, 刘长松. 碳化物/氧化物弥散强化钨基材料研究进展[J]. 金属学报, 2018, 54(6): 831-843.
[14] 陈胜虎, 戎利建. Ni-Fe-Cr合金固溶处理后的组织变化及其对性能的影响[J]. 金属学报, 2018, 54(3): 385-392.
[15] 刘锡荣, 张凯, 夏爽, 刘文庆, 李慧. 690合金中三晶交界及晶界类型对碳化物析出形貌的影响[J]. 金属学报, 2018, 54(3): 404-410.