Please wait a minute...
金属学报  2011, Vol. 47 Issue (10): 1241-1245    DOI: 10.3724/SP.J.1037.2011.00174
  论文 本期目录 | 过刊浏览 |
环形结构激光焊接凝固热裂纹的实验研究和数值模拟
温鹏1,荻崎贤二2, 山本元道2
1.清华大学机械工程系, 北京100084
2.广岛大学机械工程系, 广岛 739--8527, 日本
EXPERIMENTAL RESEARCH AND NUMERICAL SIMULATION OF SOLIDIFICATION CRACK DURING LASER WELDING OF RING STRUCTURE
WEN Peng1, Shinozaki Kenji2, Yamamoto Motomichi2
1.Mechanical Engineering Department, Tsinghua University, Beijing 10084
2.Department of Mechanical Engineering, Hiroshima University, Hiroshima 739–8527, Japan
引用本文:

温鹏 荻崎贤二 山本元道. 环形结构激光焊接凝固热裂纹的实验研究和数值模拟[J]. 金属学报, 2011, 47(10): 1241-1245.
, , . EXPERIMENTAL RESEARCH AND NUMERICAL SIMULATION OF SOLIDIFICATION CRACK DURING LASER WELDING OF RING STRUCTURE[J]. Acta Metall Sin, 2011, 47(10): 1241-1245.

全文: PDF(1036 KB)  
摘要: 以激光焊接平面环形结构时, 在首尾段重叠焊接部分发生的凝固热裂纹为例,采用实验和数值模拟相结合的手段, 从冶金和力学2个方面综合研究了环形焊缝凝固热裂纹的发生机理. 对凝固热裂纹附近的微观组织进行观察,并用电子背散射衍射对裂纹附近晶粒尺寸进行测量, 发现重叠焊缝中心部位晶粒粗大, 而粗大晶粒导致焊缝金属凝固时韧性下降. 利用有限元数值模拟对平面环形结构激光焊接过程的温度场和应变场进行计算, 与单道焊接相比,重叠焊接的焊缝金属在凝固温度区间内冷却速率较低, 应变随温度的变化速率较低,产生热裂纹的力学驱动力相应较弱. 因此, 重叠焊接部分晶粒粗大化导致的低韧性是平面环形激光焊缝凝固热裂纹发生的主要原因.
关键词 激光焊接凝固热裂纹 环形结构 晶粒尺寸 数值模拟    
Abstract:The combined influence of metallurgical and mechanical factors on welding solidification cracking structure in laser welded ring was investigated by using both experiments and numerical simulation. It is found that solidification cracking is directly related with the overlap weld part. The microstructure was observed under OM, and the grain size was measured by EBSD observation. The grains in overlap weld part are much bigger than those in single weld part, which results in falling of ductility during solidification. The temperature and strain changes of weld metal in solidification temperature range were calculated out by using 3D finite element analysis. Compared with the single weld part, the strain rate with temperature drop is lower in overlap weld part, i.e., the mechanical driving force to solidification cracking is weaker in overlap weld part. Consequently, it is concluded that the low ductility caused by coarse grain results in the occurrence of solidification cracking in overlap weld part during laser welding of ring structure. This research not only helps to understand the mechanism of solidification cracking in more details, but also guides the study on prediction of solidification cracking occurrence.
Key wordslaser welding    solidification crack    ring structure    grain size    numerical simulation
收稿日期: 2011-03-29     
ZTFLH: 

TG456.7

 
作者简介: 温鹏, 男, 1981年生, 讲师
[1] Fang H Y, Wang X T, Fang C L, Yang J G. Trans China Weld Inst, 2004; 25(4): 73

(方洪渊, 王霄腾, 范成磊, 杨建国. 焊接学报, 2004; 25(4): 73)

[2] Kou S. Welding Metallurgy. 2nd Ed., New Jersey: John Wiley & Sons, 2002: 263

[3] Li X H, Mao W, Xiong H P. J Aeronaut Mater, 2006; 26: 276

(李晓红, 毛唯, 熊华平. 航空材料学报, 2006; 26: 214)

[4] Kim Y C, Garatani K. Weld J, 1993; 72: 51

[5] Chen X Z, Shen Z, Li D S. J Shanghai Jiaotong Univ, 2010; 44: 29

(陈希章, 沈政, 李冬升. 上海交通大学学报, 2010; 44: 29)

[6] Dong Z B, Wei Y H, Liu R P, Dong Z J. Acta Metall Sin, 2005; 41: 214

(董志波, 魏艳红, 刘仁培, 董祖珏. 金属学报, 2005; 41: 214)

[7] Wen P, Shinozaki K, Yamamoto M, Tamura T, Nemoto N. Q J Jpn Weld Soc, 2009; 27: 139

[8] Feng Z L. PhD Thesis, Ohio State University, 1993

[9] Nakata K, Matsuda F. Q J Jpn Weld Soc, 1995; 13: 106

[10] Houldcroft P T. Br Weld J, 1955; 2: 471

[11] Shinozaki K. Q J Jpn Weld Soc, 2002; 71: 43

[12] Savage W F, Lundin C D. Weld J, 1965; 44: 433s

[13] Dupont J N, Michael J R, Newbury B D. Weld J, 1999; 78: 408s

[14] Matsuda F, Nakagawa H, Tomita S. Q J Jpn Weld Soc, 1988; 6: 394

[15] Wei Y H, Liu R P, Dong Z J. Sci Technol Weld Joining, 2003; 8: 325
[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[3] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[5] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[6] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[7] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[8] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[9] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.
[10] 杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.
[11] 李晓倩, 王富国, 梁爱民. 喷涂工艺对Ta2O5原位复合钽基纳米晶涂层微观结构及摩擦磨损性能的影响[J]. 金属学报, 2021, 57(2): 237-246.
[12] 张守清, 胡小锋, 杜瑜宾, 姜海昌, 庞辉勇, 戎利建. 海洋平台用Ni-Cr-Mo-B超厚钢板的截面效应[J]. 金属学报, 2020, 56(9): 1227-1238.
[13] 许占一, 沙玉辉, 张芳, 章华兵, 李国保, 储双杰, 左良. 取向硅钢二次再结晶过程中的取向选择行为[J]. 金属学报, 2020, 56(8): 1067-1074.
[14] 和淑文, 王鸣华, 白琴, 夏爽, 周邦新. WC-TiC-TaC-Co硬质合金中TaC含量对其显微组织和力学性能的影响[J]. 金属学报, 2020, 56(7): 1015-1024.
[15] 王富强, 刘伟, 王兆文. 铝电解槽中局部阴极电流增大对电解质-铝液两相流场的影响[J]. 金属学报, 2020, 56(7): 1047-1056.