Please wait a minute...
金属学报  2011, Vol. 47 Issue (3): 327-332    DOI: 10.3724/SP.J.1037.2010.00585
  论文 本期目录 | 过刊浏览 |
感应烧结制备高温自润滑涂层及其性能研究
肖玲1,丁春华1,孙岩桦2,虞烈2
1.西安交通大学航天学院强度与振动教育部重点实验室, 西安 710049
2.西安交通大学机械学院, 西安 710049
PREPARATION AND PROPERTIES OF HIGH TEMPERATURE SELF LUBRICATING COATINGS BY INDUCTION SINTERING
XIAO Ling1, DING Chunhua1,SUN Yanhua2, YU Lie2
1.MOE Key Laboratory for Strength and Vibration, School of Aerospace, Xi’an Jiaotong Uuniversity, Xi’an 710049
2.School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049
引用本文:

肖玲 丁春华 孙岩桦 虞烈. 感应烧结制备高温自润滑涂层及其性能研究[J]. 金属学报, 2011, 47(3): 327-332.
, , , , , , . PREPARATION AND PROPERTIES OF HIGH TEMPERATURE SELF LUBRICATING COATINGS BY INDUCTION SINTERING[J]. Acta Metall Sin, 2011, 47(3): 327-332.

全文: PDF(3650 KB)  
摘要: 通过高能球磨和感应烧结制备耐高温自润滑IS304涂层, 涂层中自润滑相明显细化,其中Ag尺寸为5 μm左右, BaF2/CaF2尺寸为1 μm左右. 研究表明, 环境温度和组织对涂层的摩擦性能有较大影响, 当温度为20-340 ℃时, 2种涂层的摩擦系数都较高, 磨损机理主要为微观脆性断裂; 随着温度升高, 由于磨损面上形成由氟化物和Ag组成的自润滑膜, 涂层的摩擦系数急剧降低. 当温度为340-700 ℃时, 由于IS304涂层中润滑相尺寸细小且分布均匀, 使得磨损面上形成的润滑膜完整, 并且Ag膜尺寸细小、分布均匀, 因此IS304涂层的摩擦系数明显低于润滑相粗大的PM304; 当温度继续升高至700-800 ℃时, 在摩擦力的作用下, 软化的润滑膜表面出现塑性流变, 涂层的摩擦系数明显增大. 由于PM304涂层的磨损面上的Ag膜尺寸粗大, 且Ag膜的塑性流变比氟化物膜更严重, 使得PM304涂层的摩擦系数明显大于IS304.
关键词 自润滑膜 摩擦系数 氟化物 Ag    
Abstract:NiCr–based self–lubricating PM304 coatings have been used successfully in many high–temperature, high–speed applications such as air cycle machines, bleed air turbo compressors and turbo expanders. However, coarse PM304 coatings are not fully dense, containing a few percentages of pores and cracks which are harmful not only to the coating’s tribological properties but also to the coating’s overall mechanical strength. Furthermore, fine IS304 was prepared by the methods of high energy ball milling and induction sintering. The size oself–lubricating phase was refinedwith Ag particles of about 5 μm and BaF2/CaF2 of about 1 μm. The results show that temperature and microstructure have a great effect on wear properties of IS304 and PM304 coatings. At the temperature of 20—340 ℃, the friction coefficients of two types of coatings (IS304 and PM304) are higher, and the microscopic brittle fracture is the dominant wear mechanism. With the increase of the temperature, the coefficient of the coatings decreases rapidly due to the formation of self–lubricating film on the worn surfaces which consist of Ag and fluoride. At the temperature of 340—700 ℃, since the self lubricating phase is fine and uniformly distributed in the IS304 coatings, it makes the formation of an intact lubricating film as well as Ag film fine and well distributed. Thus, the friction coefficient of IS304 is lower than that of PM304. With a further increase at the temperature of 700—800 ℃, there is the plastic flow on the surfces of the softened self–lubricating film under the influence of the friction force. Consequently, the friction coefficients of the coatings increase obviously. Comparing the PM304 with IS34 coatings, as the size of Ag film is large and he plastic flow of Ag film is much more severe than that of fluoride film, the friction coefficient of PM304 is higher than that of IS304.
Key wordsself–lubricating film    friction coefficient    fluoride    Ag
收稿日期: 2010-11-03     
基金资助:

国家自然科学基金项目50771077和50635060, 国家重点基础研究发展计划项目2007CB707705和2007CB707706以及中央高校基本科研业务费专项资金资助

作者简介: 肖玲, 女, 1983年生, 博士生
[1] DellaCorte C, Sliney H E. Lubr Eng, 1991; 47: 298

[2] Dellacorte C. Tribology Trans, 2003; 46: 361

[3] Stanford M K, Ward L D, Dellacorte C. Int J Powder Metall, 2006; 42(3): 37

[4] Radil K C, Dellacorte C. Tribology Trans, 2002; 45: 199

[5] Dellacorte C, Edmonds B J, Benoy P A. Tribology Trans, 2002; 45: 499

[6] Wang W C. Surf Coat Technol, 2004; 177: 12

[7] Dellacorte C. Surf Coat Technol, 1996; 86–87: 486

[8] Wang Z S, Guo J T, Zhou L Z, Sheng L Y, Hu Z Q. Acta Metall Sin, 2009; 45: 297

(王振生, 郭建亭, 周兰章, 盛立远, 胡壮麒. 金属学报, 2009; 45: 297)

[9] Shuaib M, Davies T J. Wear, 2001; 249: 20

[10] Wang H M, Yu Y L, Li S Q. Scr Mater, 2002; 47: 57

[11] Varin R A, Zbroniec L, Czujko T, Song Y K. Mater Sci Eng, 2001; A300: 1

[12] Feng W R, Yan D R, He J N, Zhang G L, Chen G L, Gu W C, Yang S Z. Appl Surf Sci, 2005; 243: 204

[13] Muratore C, Hu J J, Voevodin A A. Thin Solid Films, 2007; 515: 3638

[14] Singh V, Diaz R, Balani K, Agarwal A, Seal S. Acta Mater, 2009; 57: 335

[15] Voevodin A A, Prasad S V, Zabinski J S. J Appl Phys, 1997; 82: 855

[16] Hu J J, Muratore C, Voevodin A A. Compos Sci Technol, 2007; 67: 336

[17] Voevodin A A, Zabinski J S. Compos Sci Technol, 2005; 65: 741

[18] Prioli R, Reigada D C, Freire F L. Appl Phys Lett, 1999; 75: 1317

[19] Ouyang J H, Sasaki S, Murakami T, Umeda K. Mater Sci Eng, 2004; A386: 234

[20] Pauleau Y, Juliet P, Gras R. Wear, 1997; 210: 326
[1] 马敏静, 屈银虎, 王哲, 王军, 杜丹. Ag-CuO触点材料侵蚀过程的演化动力学及力学性能[J]. 金属学报, 2022, 58(10): 1305-1315.
[2] 刘明, 严富文, 高诚辉. 渐进法向力对金属材料微米划痕响应的影响[J]. 金属学报, 2021, 57(10): 1333-1342.
[3] 胡业旻,廉心桐,董瀚. 纳米Ag和载Ag材料的灭活病菌作用评述[J]. 金属学报, 2020, 56(4): 633-641.
[4] 邓聪坤,江鸿翔,赵九洲,何杰,赵雷. Ag-Ni偏晶合金凝固过程研究[J]. 金属学报, 2020, 56(2): 212-220.
[5] 曹丽华, 陈胤伯, 史起源, 远杰, 刘志权. 合金元素对中温Sn-Ag-Cu焊料互连组织及剪切强度的影响[J]. 金属学报, 2019, 55(12): 1606-1614.
[6] 杨玉林, 穆张岩, 范铮, 淡振华, 王莹, 常辉. 电化学脱合金制备纳米多孔Ag及其甲醛检测性能[J]. 金属学报, 2019, 55(10): 1302-1310.
[7] 陶辉锦,周珊,刘宇,尹健,许昊. D019-Ti3Al中点缺陷浓度与相互作用的第一性原理研究[J]. 金属学报, 2017, 53(6): 751-759.
[8] 孙磊,陈明和,张亮,杨帆. Sn-Ag-Cu钎料焊接显微组织演化和性能研究[J]. 金属学报, 2017, 53(5): 615-621.
[9] 毕宗岳,杨军,刘海璋,张万鹏,杨耀彬,田磊,黄晓江. TA1/X65复合板焊接工艺及焊缝组织和性能研究*[J]. 金属学报, 2016, 52(8): 1017-1024.
[10] 连峰,臧路苹,项秋宽,张会臣. 超疏水钛合金表面在人工海水中的摩擦性能*[J]. 金属学报, 2016, 52(5): 592-598.
[11] 左小伟,郭睿,安佰灵,张林,王恩刚. 横向磁场下定向凝固Cu-6%Ag合金的组织、硬度和电阻率*[J]. 金属学报, 2016, 52(2): 143-150.
[12] 江智,田艳红,丁苏. Sn3.5Ag0.5Cu纳米颗粒钎料制备及钎焊机理*[J]. 金属学报, 2016, 52(1): 105-112.
[13] 齐东丽, 雷浩, 范迪, 裴志亮, 宫骏, 孙超. Mo含量对CrMoN复合涂层的组织结构和性能的影响[J]. 金属学报, 2015, 51(3): 371-377.
[14] 钟晓聪, 蒋良兴, 吕晓军, 赖延清, 李劼, 刘业翔. 氯离子对Pb-Ag-RE合金阳极电化学行为的影响[J]. 金属学报, 2015, 51(3): 378-384.
[15] 马广财, 付华萌, 王峥, 徐庆亮, 张海峰. 304不锈钢毛细管/Zr53.5Cu26.5Ni5Al12Ag3块体非晶合金复合材料的制备与性能研究[J]. 金属学报, 2014, 50(9): 1087-1094.