Please wait a minute...
金属学报  2020, Vol. 56 Issue (4): 633-641    DOI: 10.11900/0412.1961.2020.00061
  综述 本期目录 | 过刊浏览 |
纳米Ag和载Ag材料的灭活病菌作用评述
胡业旻,廉心桐,董瀚()
上海大学材料科学与工程学院  上海 200444
On Silver Nano Particles and Silver-Bearing Materials as Virus and Bacteria Killing Agents
HU Yemin,LIAN Xintong,DONG Han()
School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
全文: PDF(11229 KB)   HTML
摘要: 

已有的研究工作显示纳米Ag和载Ag材料具有灭活病毒的作用。本文梳理了国内外相关的研究进展,从纳米Ag和载Ag材料的灭活病毒机制,以及生物安全性等几个方面进行评述。对于载Ag钢铁材料的灭活病菌作用,以及Ag对力学性能和耐腐蚀性能的影响也作了归纳。在作者研发的银合金化在不锈钢和铸铁、纳米Ag珐琅层铸铁的应用表明了灭活病菌的效果。

关键词 纳米Ag载Ag材料灭活病毒生物安全性    
Abstract

It is shown by the studies that silver nano particles and silver-bearing materials have noticeable antiviral effects. The research progresses of silver nano particles and silver-bearing materials as antiviral agents are summarized and reviewed based on the aspects of possible antiviral mechanisms as well as bio-safety. The antibacterial effects of Ag-bearing iron and steels, and the effects of Ag on mechanical properties and corrosion resistance, are also summarized. It is shown by the results that silver alloying and silver nano particles could promote the inhabitation of ferrous materials to bacteria and virus.

Key wordssilver nano particle    silver-bearing material    antivirus    bio-safety
收稿日期: 2020-02-25     
ZTFLH:  R454  
通讯作者: 董瀚     E-mail: 13910077790@163.com
Corresponding author: Han DONG     E-mail: 13910077790@163.com
作者简介: 胡业旻,男,1979年生,副研究员,博士

引用本文:

胡业旻,廉心桐,董瀚. 纳米Ag和载Ag材料的灭活病菌作用评述[J]. 金属学报, 2020, 56(4): 633-641.
Yemin HU, Xintong LIAN, Han DONG. On Silver Nano Particles and Silver-Bearing Materials as Virus and Bacteria Killing Agents. Acta Metall Sin, 2020, 56(4): 633-641.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2020.00061      或      https://www.ams.org.cn/CN/Y2020/V56/I4/633

图1  纳米Ag灭活病毒的机理示意图(以冠状病毒为例)
图2  不同组犬肾细胞的免疫荧光法检测结果[24]
图3  3型副流感病毒(PIV3)的形态结构(透射电镜负染 ×200000)[24]
图4  Ag合金化灰口铸铁的Ag成分图谱[58]
[1] García-Serradilla M, Risco C, Pacheco B. Drug repurposing for new, efficient, broad spectrum antivirals [J]. Virus Res., 2019, 264: 22
[2] White R J. An historical overview of the use of silver in wound management [J]. Br. J. Nurs., 2002, 10(Suppl.4): 3
[3] Pliny the Elder translated by Rackham H. Natural History, Libri XXXIII, Part XXXV, Volume IX [M]. Cambridge: Harvard University Press, 1952: 6
[4] Guo K X. A brief history of metallography: IV. Early developments of alloy steels [J]. Mater. Sci. Eng., 2001, 19(3): 2
[4] 郭可信. 金相学史话(4): 合金钢的早期发展史 [J]. 材料科学与工程, 2001, 19(3): 2
[5] Gupta A, Maynes M, Silver S. Effects of halides on plasmid-mediated silver resistance in Escherichia coli [J]. Appl. Environ. Microbiol., 1998, 64: 5042
[6] Burdu?el A C, Gherasim O, Grumezescu A M, et al. Biomedical applications of silver nanoparticles: An up-to-date overview [J]. Nanomaterials, 2018, 8: 681
[7] Elechiguerra J L, Burt J L, Morones J R, et al. Interaction of silver nanoparticles with HIV-1 [J]. J. Nanobiotechnol., 2005, 3: 6
[8] Xiang D X, Zheng C L. Study of silver-nanoparticles on antiviral action [J]. J. Dalian Med. Univ., 2009, 31: 716
[8] 向冬喜, 郑丛龙. 纳米银抗病毒作用的研究进展 [J]. 大连医科大学学报, 2009, 31: 716
[9] Lara H H, Ayala-Nu?ez N V, Ixtepan-Turrent L, et al. Mode of antiviral action of silver nanoparticles against HIV-1 [J]. J. Nanobiotechnol., 2010, 8: 1
[10] Xiang D X, Chen Q, Pang L, et al. Inhibitory effects of silver nanoparticles on H1N1 influenza A virus in vitro [J]. J. Virol. Methods, 2011, 178: 137
[11] Gui F, Zhang Z R, Zheng C L, et al. Study of nanometer catalyst on antiviral action [J]. Virol. Sin., 2005, 20(1): 70
[11] 桂 芳, 张卓然, 郑丛龙等. 消杀型纳米催化剂抗病毒作用的研究 [J]. 中国病毒学, 2005, 20(1): 70
[12] Xu L C, Shang J, Sun Y, et al. Silver nanoparticles and anti-bacterial silver coating: Research and development [J]. Chin. J. Tiss. Eng. Res., 2016, 20: 3793
[12] 徐连春, 尚 剑, 孙 晔等. 银纳米颗粒及载银抗菌涂层的研究与进展 [J]. 中国组织工程研究, 2016, 20: 3793
[13] Davies R L, Etris S F. The development and functions of silver in water purification and disease control [J]. Catal. Today, 1997, 36: 107
[14] Alt V, Bechert T, Steinrücke P, et al. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement [J]. Biomaterials, 2004, 25: 4383
[15] Schierholz J M, Lucas L J, Rump A, et al. Efficacy of silver-coated medical devices [J]. J. Hosp. Infect., 1998, 40: 257
[16] Kim J S. Antibacterial activity of Ag+ ion-containing silver nanoparticles prepared using the alcohol reduction method [J]. J. Ind. Eng. Chem., 2007, 13: 718
[17] Marambio-Jones C, Hoek E M V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment [J]. J. Nanopart. Res., 2010, 12: 1531
[18] Dong J S, Chen S H, Lu M Q, et al. History and current status of antibacterial materials [J]. Mater. Rev., 2004, 18(3): 41
[18] 董加胜, 陈四红, 吕曼祺等. 抗菌材料发展和现状 [J]. 材料导报, 2004, 18(3): 41
[19] Wang Y H, Huang N, Yu Z G, et al. Study on anti-HIV activity of silver nanoparticles in vitro [J]. Mod. Prev. Med., 2009, 36: 4123
[19] 王云华, 黄 宁, 于增国等. 纳米银体外抗HIV活性的研究 [J]. 现代预防医学, 2009, 36: 4123
[20] Lu L, Sun R W, Chen R, et al. Silver nanoparticles inhibit hepatitis B virus replication [J]. Antivir. Ther., 2008, 13: 253
[21] Xiang D X, Jiang X T, Li X J, et al. Anti-viral effects of silver-nanoparticles on H3N2 influenza virus in vitro and its mechanism [J]. West China Med. J., 2011, 26(1): 4
[21] 向冬喜, 蒋晓婷, 李秀景等. 纳米银体外抗H3N2流感病毒作用及其机制初步探讨 [J]. 华西医学, 2011, 26(1): 4
[22] Xiang D X, Zheng Y, Duan W, et al. Inhibition of A/Human/Hubei/3/2005 (H3N2) influenza virus infection by silver nanoparticles in vitro and in vivo [J]. Int. J. Nanomedicine, 2013, 8: 4103
[23] Chen N N, Wang Y H, Yin J J, et al. Inhibitory effects of silver nanoparticles and their possible mechanism on adenovirus in vitro [J]. J. Dalian Med. Univ., 2011, 33: 415
[23] 陈娜娜, 王云华, 尹俭俭等. 纳米银体外抗腺病毒作用及机制研究 [J]. 大连医科大学学报, 2011, 33: 415
[24] Yin J J, Li X J, Zheng C L. Potential mechanism and inhibitory effects of silver nanoparticles on parainfluenza virus type 3 [J]. J. Jiangsu Univ. (Med. Ed.), 2013, 23: 191
[24] 尹俭俭, 李秀景, 郑丛龙. 纳米银灭活3型副流感病毒作用及机制研究 [J]. 江苏大学学报(医学版), 2013, 23: 191
[25] Li X J, Yin J J, Zheng C L. Therapeutic effect of silver nanoparticles against influenza in mice [J]. J. Dalian Med. Univ., 2013, 35: 223
[25] 李秀景, 尹俭俭, 郑丛龙. 纳米银对小鼠流感治疗作用的研究 [J]. 大连医科大学学报, 2013, 35: 223
[26] Hu R L, Yang J. Inhibiting effect of nano-silver on Herpes simplex virus 2 [J]. Mater. Child Health Care China, 2014, 29: 3977
[26] 户瑞丽, 杨 君. 纳米银对单纯疱疹病毒2的抑制作用 [J]. 中国妇幼保健, 2014, 29: 3977
[27] Sujitha V, Murugan K, Paulpandi M, et al. Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti [J]. Parasitol. Res., 2015, 114: 3315
[28] WHO. Dengue and severe dengue, Fact sheet N°117 [R]. Geneva: World Health Organization, 2015
[29] Yang H Y, Xie X M, Wang B, et al. In vitro inhibitory effects of nanometer silver on tobacco virus [J]. Guizhou Agric. Sci., 2011, 39(11): 112
[29] 杨海艳, 谢雪梅, 王 波等. 纳米银对烟草病毒的体外抑制作用 [J]. 贵州农业科学, 2011, 39(11): 112
[30] Lv X N, Wang P, Bai R, et al. Inhibitory effect of silver nanomaterials on transmissible virus-induced host cell infections [J]. Biomaterials, 2014, 35: 4195
[31] Li H Y, Chen L J, Li W C, et al. An investigation on antiviral and bactericidal effects of silver nanoparticles against Bombyx mori Nucleopolyhedrovirus and Ralstonia solanacearum [J]. Acta Sericol. Sin., 2017, 43: 626
[31] 刘合永, 陈柳娟, 李文楚等. 纳米银对家蚕核型多角体病毒和青枯劳尔氏菌的杀灭作用 [J]. 蚕业科学, 2017, 43: 626
[32] Thurman R B, Gerba C P, Bitton G. The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses [J]. Crit. Rev. Env. Contr., 1989, 18: 295
[33] Samuni A, Chevion M, Czapski G. Roles of copper and O2-? in the radiation-induced inactivation of T7 bacteriophage [J]. Radial. Res., 1984, 99: 562
[34] Samuni A, Aronovitch J, Godinger D, et al. On the cytotoxicity of vitamin C and metal ions: A site-specific Fenton mechanism [J]. Eur. J. Biochem., 1983, 137: 119
[35] Zhang J Y, Wang Z P, Guo S, et al. Progress in research on silver as an anti-infective agent for medical uses [J]. Chin. Sci. Bull., 2010, 55: 1639
[35] 张净宇, 王卓鹏, 郭 嵩等. 含银抗感染制剂的研究进展 [J]. 科学通报, 2010, 55: 1639
[36] Klasen H J. Historical review of the use of silver in the treatment of burns. I. Early uses [J]. Burns, 2000, 26: 117
[37] Fox C L Jr, Modak S M. Mechanism of silver sulfadiazine action on burn wound infections [J]. Antimicrob. Agents Chemother., 1974, 5: 582
[38] Eichhorn G L, Berger N A, Butzow J J, et al. Metal Ions in Biological Systems: Studies of Some Biochemical and Environmental Problems [M]. New York: Plenum Press, 1973: 43
[39] Feng Q L, Wu J, Chen G Q, et al. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus [J]. J. Biomed. Mater. Res., 2000, 52: 662
[40] Slawson R M, Van Dyke M I, Lee H, et al. Germanium and silver resistance, accumulation, and toxicity in microorganisms [J]. Plasmid, 1992, 27: 72
[41] Tokumaru T, Shimizu Y Y, Fox C L Jr. Antiviral activities of silver sulfadiazine in ocular infection [J]. Res. Commun. Chem. Pathol. Pharmacol., 1974, 8: 151
[42] de Sena L á, de Andrade M C, Rossi A M, et al. Hydroxyapatite deposition by electrophoresis on titanium sheets with different surface finishing [J]. J. Biomed. Mater. Res., 2002, 60: 1
[43] Chen W, Liu Y, Courtney H S, et al. In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating [J]. Biomaterials, 2006, 27: 5512
[44] Wang Y H, Zhu Z Y, Zhang F Q, et al. The antibacterial activity of plasma sprayed silver-containing hydroxyapatite coatings [J]. Shanghai J. Stomatol., 2009, 18: 317
[44] 王宇华, 朱梓园, 张富强等. 单质银应用于等离子喷涂抗菌涂层的研究 [J]. 上海口腔医学, 2009, 18: 317
[45] Dutta P, Wang B. Zeolite-supported silver as antimicrobial agents [J]. Coord. Chem. Rev., 2019, 383: 1
[46] Yokota T, Tochihara M, Ohta M. Silver dispersed stainless steel with antibacterial property [J]. Kawasaki Steel Tech. Rep., 2002, (46): 37
[47] Jing H M, Chen S H, Dong J S, et al. Anti-bacterium stainless steels and its development [J]. Mater. Protect., 2003, 36(10): 9
[47] 敬和民, 陈四红, 董加胜等. 抗菌不锈钢材料及其发展现状 [J]. 材料保护, 2003, 36(10): 9
[48] Chiang W C, Hilbert L R, Schroll C, et al. Bacterial inhibiting surfaces caused by the effects of silver release and/or electrical field [J]. Electrochim. Acta, 2008, 54: 108
[49] Chiang W C, Tseng I S, M?ller P, et al. Influence of silver additions to type 316 stainless steels on bacterial inhibition, mechanical properties, and corrosion resistance [J]. Mater. Chem. Phys., 2010, 119: 123
[50] Liao K H, Ou K L, Cheng H C, et al. Effect of silver on antibacterial properties of stainless steel [J]. Appl. Surf. Sci., 2010, 256: 3642
[51] Huang C F, Chiang H J, Lan W C, et al. Development of silver-containing austenite antibacterial stainless steels for biomedical applications Part I: Microstructure characteristics, mechanical properties and antibacterial mechanisms [J]. Biofouling, 2011, 27: 449
[52] Papo N, Shai Y. A molecular mechanism for lipopolysaccharide protection of Gram-negative bacteria from antimicrobial peptides [J]. J. Biol. Chem., 2005, 280: 10378
[53] Yang S M, Chen Y C, Pan Y T, et al. Effect of silver on microstructure and antibacterial property of 2205 duplex stainless steel [J]. Mater. Sci. Eng., 2016, C63: 376
[54] Ma D C, Su J, Dong H, et al. Antibacterial secondary hardening cutter-type stainless steel [P]. Chin Pat, 101333621A, 2010
[54] 马党参, 苏 杰, 董 瀚等. 一种抗菌二次硬化刀具不锈钢 [P]. 中国专利, 101333621A, 2010)
[55] Su J, Sun S H, Ma D C, et al. Antibacterial cutter-type stainless steel [P]. Chin Pat, 101333626A, 2010
[55] 苏 杰, 孙绍华, 马党参等. 一种抗菌刀具不锈钢 [P]. 中国专利, 101333626A, 2010)
[56] Yang Y D, Liu Z, Wang Z M, et al. High-strength-toughness antibacterial stainless steel for knives and preparation method thereof [P]. Chin Pat, 110093567A, 2019
[56] 杨玉丹, 刘 峥, 王子萌等. 高强韧抗菌刀具用不锈钢及其制备方法 [P]. 中国专利, 110093567A, 2019)
[57] Liu Z, Yang Y D, Wang Z M, et al. High-strength high-corrosion-resistance antibacterial stainless steel and preparation method thereof [P]. Chin Pat, 109972040A, 2019
[57] 刘 峥, 杨玉丹, 王子萌等. 高强度高耐蚀抗菌刀具用不锈钢及其制备方法 [P]. 中国专利, 109972040A, 2019)
[58] Lian X T, Zhu J N, Dong H, et al. Effects of micro-alloying elements on microstructure, element distribution and mechanical properties in gray irons [J]. Inter. Metalcast., 2020, DOI: 10.1007/s40962-019-00402-4
[59] Adorno A T, Guerreiro M R, Benedetti A V. Influence of silver additions on the aging characteristics of the Cu-10.4at.%Al alloy [J]. J. Alloys Compd., 1998, 268: 122
[60] Valdez S, Pérez R, Rodriguez-Diaz R A, et al. Relationship between silver concentration with microstructural and mechanical properties of rolled AlZn alloy [J]. Mater. Sci. Eng., 2010, A527: 3085
[61] Xiang H L, Liu D, Chen X P, et al. On the microstructure and mechanical properties of silver-bearing antibacterial CD4MCu duplex stainless steels: Solid solution temperature [J]. Mater. Express., 2019, 9: 1067
[62] Han J, Chen L, Duan S M, et al. Efficient and quick inactivation of SARS coronavirus and other microbes exposed to the surfaces of some metal catalysts [J]. Biomed. Environ. Sci., 2005, 18: 176
[63] Feng Y M, Tang Z T, Huo X X, et al. Research on anti-virus performance of inner silvered fiber [J]. J. Environ. Health, 2005, 22: 374
[63] 冯晏萌, 唐振庭, 霍细香等. 内镀银纤维的抗病毒性能 [J]. 环境与健康杂志, 2005, 22: 374
[64] Yang L, Ning X S, Xiao Q F, et al. Development and characterization of porous silver-incorporated hydroxyapatite ceramic for separation and elimination of microorganisms [J]. J. Biomed. Mater. Res., 2007, 81B: 50
[65] Bright K R, Sicairos-Ruelas E E, Gundy P M, et al. Assessment of the antiviral properties of zeolites containing metal ions [J]. Food Environ. Virol., 2009, 1: 37
[66] Chernousova S, Epple M. Silver as antibacterial agent: Ion, nanoparticle, and metal [J]. Angew. Chem., Int. Ed., 2013, 52: 1636
[67] Casemiro L A, Martins C H G, Pires-de-Souza F C P, et al. Antimicrobial and mechanical properties of acrylic resins with incorporated silver-zinc zeolite-Part I [J]. Gerodontology, 2008, 25: 187
[68] Rendin L J, Gamba C L, Johnson W M. Colloidal oxide of silver in the treatment of peptic ulcer; a nine-day therapy [J]. Pak. Med. J., 1958, 61: 612
[69] Munger M A, Radwanski P, Hadlock G C, et al. In vivo human time-exposure study of orally dosed commercial silver nanoparticles [J]. Nanomed. Nanotechnol. Biol. Med., 2014, 10: 1
[70] Baral V, Dewar A, Connett G. Colloidal silver for lung disease in cystic fibrosis [J]. J. Roy. Soc. Med., 2008, 101: 51
[71] Nakane T, Gomyo H, Sasaki I, et al. New antiaxillary odour deodorant made with antimicrobial Ag-zeolite (silver-exchanged zeolite) [J]. Int. J. Cosmet. Sci., 2006, 28: 299
No related articles found!