Please wait a minute...
金属学报  2016, Vol. 52 Issue (5): 592-598    DOI: 10.11900/0412.1961.2015.00342
  论文 本期目录 | 过刊浏览 |
超疏水钛合金表面在人工海水中的摩擦性能*
连峰(),臧路苹,项秋宽,张会臣
大连海事大学交通运输装备与海洋工程学院, 大连 116026
TRIBOLOGICAL PERFORMANCE OF SUPER HYDRO-PHOBIC TITANIUM ALLOY SURFACE INARTIFICIAL SEAWATER
Feng LIAN(),Luping ZANG,Qiukuan XIANG,Huichen ZHANG
College of Transportation Equipments and Ocean Engineering, Dalian Maritime University, Dalian 116026, China
引用本文:

连峰,臧路苹,项秋宽,张会臣. 超疏水钛合金表面在人工海水中的摩擦性能*[J]. 金属学报, 2016, 52(5): 592-598.
Feng LIAN, Luping ZANG, Qiukuan XIANG, Huichen ZHANG. TRIBOLOGICAL PERFORMANCE OF SUPER HYDRO-PHOBIC TITANIUM ALLOY SURFACE INARTIFICIAL SEAWATER[J]. Acta Metall Sin, 2016, 52(5): 592-598.

全文: PDF(1149 KB)   HTML
  
摘要: 

为提高钛合金在海水中的摩擦性能, 采用激光加工技术分别制备具有网格和点阵微结构的超疏水Ti6Al4V合金表面. 采用HSR-2M高速往复摩擦试验机研究其在人工海水介质中的摩擦学行为, 并与水介质比较. 结果表明, 超疏水Ti6Al4V合金表面的摩擦系数和磨损量(体积)均显著小于Ti6Al4V基体. 海水介质中, 与空白样相比, 点阵和网格表面的摩擦系数分别减小了17.8%和11.7%, 磨损量分别减小了36.8%和57.5%. 超疏水Ti6Al4V合金表面在海水介质中的摩擦系数小于水介质中, 磨损量大于水介质中. 超疏水钛合金表面的制备显著提高了钛合金在海水中的摩擦性能.

关键词 超疏水钛合金人工海水摩擦系数磨损量    
Abstract

The service environment faced by marine equipment and its key friction pair parts are much more severe than that on land surface. The life cycle and safety of the hydraulic and power transmission system, which directly get in touch with the seawater, depends largely on the tribological behavior of the components in the seawater. Titanium alloy is an ideal material used for ocean engineering, however due to its poor friction performance its life cycle may be shortened when working in the environment with friction and wear. In order to improve the tribological performance of titanium alloy in seawater, laser processing was used to build super hydrophobic with grid and dot micro-structure on Ti6Al4V alloy surface. Tribological performance was evaluated by HSR-2M high speed reciprocating friction test machine in artificial seawater, and compared with in water (distilled water). The results show that the friction coefficients and wear losses (volume) of super hydrophobic Ti6Al4V alloy surface are significantly smaller than that of the Ti6Al4V alloy substrate. The friction coefficients of surface with dot and grid reduced by 17.8% and 11.7%, and wear losses (volume) reduced by 36.8% and 57.5% respectively in artificial seawater. The friction coefficient of super hydrophobic Ti6Al4V alloy surface in artificial seawater is smaller than that in water while the wear loss has the opposite phenomena. The tribological performances of titanium alloy in artificial seawater are significantly improved by the build of super hydrophobic Ti6Al4V alloy surface.

Key wordssuper hydrophobic    titanium alloy    artificial seawater    friction coefficient    wear loss
收稿日期: 2015-06-30     
基金资助:* 国家自然科学基金项目51275064和50975036, 中央高校基本科研业务费专项资金项目3132014303及辽宁省工业攻关计划项目2012220006资助
Specimen Contact angle Surface energy
(o) (mNm-1)
Vacancy 56.8 145.56
Grid surface 156.8 0.40
Dot surface 154.6 0.57
表1  空白试样及网格和点阵微结构试样的接触角和表面能
图1  网格和点阵微结构试样表面的三维形貌
Specimen In water In seawater
Vacancy 0.549 0.512
Grid surface 0.469 0.452
Dot surface 0.442 0.421
表2  空白试样及网格和点阵微结构试样的摩擦系数均值
图2  空白试样及网格和点阵微结构试样在不同介质中的摩擦曲线
图3  空白试样及网格和点阵微结构试样在水和海水中的磨痕
Specimen In water In seawater
107 mm3 107 mm3
Vacancy 9.3 12.7
Grid surface 2.8 5.4
Dot surface 3.0 7.8
表3  空白试样及网格和点阵微结构试样的磨损量
图4  空白试样的磨屑和EDS分析
图5  空白试样在水和海水中的磨痕
[1] Guo F, Wang Y X, Xue Q J, Wang L P.J Tribol, 2014; 34: 608
[1] (郭峰, 王永欣, 薛群基, 王立平. 摩擦学学报, 2014; 34: 608)
[2] Cui G J, Bi Q L, Zhu S Y, Yang J, Liu W M.Tribol Int, 2012; 53: 76
[3] Wang Z T, Zhou X H, Zhao G G.Trans Nonferrous Met Soc China, 2008; 18: 831
[4] Feng S R, Tang H B, Zhang S Q, Wang H M.Trans Nonferrous Met Soc China, 2012; 22: 1667
[5] Zaveri N, Mahapatra M, Deceuster A, Peng Y, Li L J, Zhou A H.Electrochim Acta, 2008; 53: 5022
[6] Zhong H S, Li J L, Wang Y X, Wang L P, Xue Q J.J Vac Sci Technol, 2014; 34: 961
[6] (钟华生, 李金龙, 王永欣, 王立平, 薛群基. 真空科学与技术学报, 2014; 34: 961)
[7] Deng K, Yu M, Dai Z D, Liang J, Zhang G A, Liu W M.Rare Met Mater Eng, 2014; 43: 1099
[7] (邓凯, 于敏, 戴振东, 梁军, 张广安, 刘维民. 稀有金属材料与工程, 2014; 43: 1099)
[8] Xi J M, Feng L, Jiang L.Appl Phys Lett, 2008; 92: 53101
[9] Burton Z, Bhushan B.Ultramicroscopy, 2006; 106: 709
[10] Mehdi S, Ahmet T A.Appl Surf Sci, 2009; 256: 710
[11] Wan Y, Wang Z Q, Liu Y F.J Inorg Mater, 2012; 27: 390
[11] (万勇, 王中乾, 刘义芳. 无机材料学报, 2012; 27: 390)
[12] Wang H Y, Meng Y, Zhao J Y, Zhu Y J.J Mater Eng, 2014; (3): 90
[12] (汪怀远, 孟旸, 赵景岩, 朱艳吉. 材料工程, 2014; (3): 90)
[13] Thieme M, Streller F, Simon F, Frenzel R, White A J.Appl Surf Sci, 2013; 283: 1041
[14] Jung Y C, Bhushan B.Nanotechnology, 2006; 17: 4970
[15] Wang S T, Feng L, Jiang L.Appl Surf Sci, 2006; 18: 767
[16] Liang J S, Liu K Y, Wang D Z, Li H, Li P F, Li S Z, Su S J, Xu S C, Luo Y.Appl Surf Sci, 2015; 338: 126
[17] Kang Z X, Guo M J.Acta Metall Sin, 2013; 49: 629
[17] (康志新, 郭明杰. 金属学报, 2013; 49: 629)
[18] Lin Y Z, Wang T C.J Shandong Univ Sci Technol (Nat Sci), 2008; 27(2): 44
[18] (林跃忠, 王铁成. 山东科技大学学报(自然科学版), 2008; 27(2): 44)
[19] Zhang H, Lamb R, Lewis J.Sci Technol Adv Mater, 2005; 6: 236
[20] Cassie A B D, Baxter S.Trans Faraday Soc, 1944; 40: 546
[21] Xia F, Jiang L.Adv Mater, 2008; 20: 2842
[22] Wen S Z. Nano Tribology.Beijing: Tsinghua University Press, 1998: 103
[22] (温诗铸. 纳米摩擦学. 北京: 清华大学出版社, 1998: 103)
[23] Wang J H, Song M, Li J L, Wang X B.Tribology, 2011; 31: 118
[23] (王建华, 宋敏, 李金龙, 王晓波. 摩擦学学报, 2011; 31: 118)
[24] Chen J, Yan F Y.Trans Nonferrous Met Soc China, 2012; 22: 1356
[25] Ding H Y, Dai Z D.Tribology, 2008; 28: 139
[25] (丁红燕, 戴振东. 摩擦学学报, 2008; 28: 139)
[1] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[2] 张滨, 田达, 宋竹满, 张广平. 深潜器耐压壳用钛合金保载疲劳服役可靠性研究进展[J]. 金属学报, 2023, 59(6): 713-726.
[3] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[4] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[5] 王海峰, 张志明, 牛云松, 杨延格, 董志宏, 朱圣龙, 于良民, 王福会. 前置渗氧对TC4钛合金低温等离子复合渗层微观结构和耐磨损性能的影响[J]. 金属学报, 2023, 59(10): 1355-1364.
[6] 崔振铎, 朱家民, 姜辉, 吴水林, 朱胜利. Ti及钛合金表面改性在生物医用领域的研究进展[J]. 金属学报, 2022, 58(7): 837-856.
[7] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.
[8] 颜孟奇, 陈立全, 杨平, 黄利军, 佟健博, 李焕峰, 郭鹏达. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890.
[9] 张婷, 李仲杰, 许浩, 董安平, 杜大帆, 邢辉, 汪东红, 孙宝德. 激光沉积法制备Ti/TNTZO层状材料及其组织性能[J]. 金属学报, 2021, 57(6): 757-766.
[10] 戴进财, 闵小华, 周克松, 姚凯, 王伟强. 预变形与等温时效耦合作用下Ti-10Mo-1Fe/3Fe层状合金的力学性能[J]. 金属学报, 2021, 57(6): 767-779.
[11] 李金山, 唐斌, 樊江昆, 王川云, 花珂, 张梦琪, 戴锦华, 寇宏超. 高强亚稳β钛合金变形机制及其组织调控方法[J]. 金属学报, 2021, 57(11): 1438-1454.
[12] 杨锐, 马英杰, 雷家峰, 胡青苗, 黄森森. 高强韧钛合金组成相成分和形态的精细调控[J]. 金属学报, 2021, 57(11): 1455-1470.
[13] 刘明, 严富文, 高诚辉. 渐进法向力对金属材料微米划痕响应的影响[J]. 金属学报, 2021, 57(10): 1333-1342.
[14] 林彰乾, 郑伟, 李浩, 王东君. 放电等离子烧结TA15钛合金及石墨烯增强TA15复合材料微观组织与力学性能[J]. 金属学报, 2021, 57(1): 111-120.
[15] 张海军, 邱实, 孙志梅, 胡青苗, 杨锐. 无序β-Ti1-xNbx合金自由能及弹性性质的第一性原理计算:特殊准无序结构和相干势近似的比较[J]. 金属学报, 2020, 56(9): 1304-1312.