Please wait a minute...
金属学报  2011, Vol. 47 Issue (3): 349-353    DOI: 10.3724/SP.J.1037.2010.00421
  论文 本期目录 | 过刊浏览 |
激光熔覆Cu-Mn合金电解腐蚀选择性溶解及纳米多孔涂层制备研究
谷雨,董长胜,马明星,钟敏霖,刘文今
清华大学机械工程系先进成形制造教育部重点实验室, 北京 100084
RESEARCH ON THE SELECTIVELY DISSOLUTION CHARACTERISTICS OF Cu–Mn ALLOYS AND FABRICATION OF NANOPOROUS COATINGS BY LASER CLADDING HYBRID ELECTROCHEMICALLY DEALLOYING
GU Yu, DONG Changsheng, MA Mingxing, ZHONG Minlin, LIU Wenjin
Department of Mechanical Engineering, Key Laboratory for Advanced Materials Processing Technology, Ministry of
Education, Tsinghua University, Beijing 100084
引用本文:

谷雨 董长胜 马明星 钟敏霖 刘文今. 激光熔覆Cu-Mn合金电解腐蚀选择性溶解及纳米多孔涂层制备研究[J]. 金属学报, 2011, 47(3): 349-353.
, , , , . RESEARCH ON THE SELECTIVELY DISSOLUTION CHARACTERISTICS OF Cu–Mn ALLOYS AND FABRICATION OF NANOPOROUS COATINGS BY LASER CLADDING HYBRID ELECTROCHEMICALLY DEALLOYING[J]. Acta Metall Sin, 2011, 47(3): 349-353.

全文: PDF(1307 KB)  
摘要: 采用激光熔覆结合熔覆层激光快速重熔工艺, 在45钢表面制备了成形良好、稀释率低的Cu-Mn合金涂层, 涂层微观组织为细小的树枝晶, 随着激光重熔速度的提高, 二次枝晶间距统计平均值从3.1 μm减小为1.6 μm. 动电位扫描测试表明, 对于不同的电解液, Cu-Mn合金表现出选择性溶解特性. 对合金涂层在HCl和KNO3溶液中进行电解腐蚀脱合金后,分别成功制备了纳米多孔结构的Cu涂层和Mn涂层. 纳米多孔Cu孔径尺寸为30-50 nm, 而纳米多孔Mn的微观形貌为类似于“丝瓜筋”的网状结构, 粗糙度系数高达900.
关键词 激光熔覆 Cu-Mn合金 脱合金 纳米多孔    
Abstract:Nanoporous metals have attracted considerable attention for a wide range of applications in catalysis, sensing and bio–detection due to their large surface–to–volume ratios and excellent thermal and electrical conductivities. It has been proven that dealloying is the most effective method to yield nanoporous metals. Recently, a number of nanoporous metals, including Au, Ag and Pt have been synthesized by dealloying. Most of the research focused on etching the more active components from the precursors in different electrolyte owing to their higher reactivity, such as Ag, Al, Zr and Mn. In this paper selective dissolution of Cu or Mn components from Cu–Mn alloys was reported, and nanoporous coatings were fabricated by a two–step process involving high power laser cladding of a homogeneous Cu40Mn60 alloy coatings followed by selectively electrochemical dealloying. Cu–Mn alloy coatings with fine shape, low dilute ratio and refined microstructure were fabricated on mild steel by means of laser processingThe second dendrite arm spacing (SDAS) decreased with the increasing of lser remelting speed. The SDAS can be refined to be 1.6 μm with the laser remelting speed 83 mm/s. Polarization curve indicates that Cu–Mn alloy shows selective dissolution characteristics for different electrolytes. Nanoporous Cu and nanoporous Mn were fabricated with optimal electrochemically dealloying parameters in 0.1 mol/L HCl and 0.1 mol/L KNO3 solution respectively. Nanoporous Cu with pore size ranes from 30 nm to 50 nm, while the surface morphology of the porous Mn was a ribbon–like structurwith ultrahigh roughness factor up to 900.
Key wordslaser cladding    Cu–Mn alloy    dealloying    nanoporous
收稿日期: 2010-08-23     
基金资助:

国家自然科学基金资助项目90923021

作者简介: 谷雨, 男, 1982年生, 博士生
[1] Li H X, Zhao Q F, Wan Y, Dai W L, Qiao M H. J Catal, 2006; 244: 251

[2] Pugh D, Dursun A, Corcoran S. J Mater Res, 2003; 18: 216

[3] Thomas K. Catal Today, 2007; 120: 389

[4] Ding Y, Chen M W, Erlebacher J. J Am Chem Soc, 2004; 126: 6876

[5] Uchic M D, Dimiduk D M, Florando J N, Nix W D. Science , 2004; 305: 986

[6] Smith A J. Ann Rev Mater Res, 2005; 35: 127

[7] Min U S, Li J C M. J Mater Res, 1994; 9: 2878

[8] Li S, Chien C L, Searson P C. Chem Mater, 2004; 16: 3125

[9] Chang J K, Hsu S H, Sun I W, Tsi W TJ Phys Chem, 2008; 112C: 1371

[10] Hayes J R, Hodge A M, Biener J, Hamza A V. J Mater Res, 2006; 21: 2611

[11] Chen L Y, Yu J S, Fujita T, Chen M W. Adv Funct Mater, 2009; 19: 1

[12] Lu H B, Li Y, Wang F H. Scr Mater, 2007; 56: 165

[13] Kan Y D, Ma M X, Liu W J, Zhong M L, Gu Y, Dong C S, Zhang H J. Appl Laser, 2008; 28: 455

(阚义德, 马明星, 刘文今, 钟敏霖, 谷雨, 董长胜, 张红军. 应用激光,2008; 28: 455)

[14] Jia F L, Yu C F, Ai Z H, Zhang L Z. Chem Mater, 2007; 19: 3648

[15] Liu H T, He P, Li Z Y, Li J H. Nanotechnology, 2006; 17: 2167
[1] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[2] 段慧超, 王春阳, 叶恒强, 杜奎. 纳米多孔金属表面结构与成分的三维电子层析表征[J]. 金属学报, 2023, 59(10): 1291-1298.
[3] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[4] 冯凯, 郭彦兵, 冯育磊, 姚成武, 朱彦彦, 张群莉, 李铸国. 激光熔覆高强韧铁基涂层精细组织调控与性能研究[J]. 金属学报, 2022, 58(4): 513-528.
[5] 赵万新, 周正, 黄杰, 杨延格, 杜开平, 贺定勇. FeCrNiMo激光熔覆层组织与摩擦磨损行为[J]. 金属学报, 2021, 57(10): 1291-1298.
[6] 童文辉, 张新元, 李为轩, 刘玉坤, 李岩, 国旭明. 激光工艺参数对TiC增强钴基合金激光熔覆层组织及性能的影响[J]. 金属学报, 2020, 56(9): 1265-1274.
[7] 张煜, 娄丽艳, 徐庆龙, 李岩, 李长久, 李成新. 超高速激光熔覆镍基WC涂层的显微结构与耐磨性能[J]. 金属学报, 2020, 56(11): 1530-1540.
[8] 徐秀月, 李艳辉, 张伟. Fe(Pt, Ru)B非晶带材脱合金制备纳米多孔PtRuFe及其甲醇电催化性能[J]. 金属学报, 2020, 56(10): 1393-1400.
[9] 杨玉林, 穆张岩, 范铮, 淡振华, 王莹, 常辉. 电化学脱合金制备纳米多孔Ag及其甲醛检测性能[J]. 金属学报, 2019, 55(10): 1302-1310.
[10] 范丽, 陈海龑, 董耀华, 李雪莹, 董丽华, 尹衍升. 激光熔覆铁基合金涂层在HCl溶液中的腐蚀行为[J]. 金属学报, 2018, 54(7): 1019-1030.
[11] 林英华, 袁莹, 王梁, 胡勇, 张群莉, 姚建华. 电磁复合场对Ni60合金凝固过程中显微组织和裂纹的影响[J]. 金属学报, 2018, 54(10): 1442-1450.
[12] 童文辉,赵子龙,张新元,王杰,国旭明,段新华,刘豫. 球墨铸铁表面激光熔覆TiC/钴基合金组织和性能研究[J]. 金属学报, 2017, 53(4): 472-478.
[13] 刘彬,贡凯,乔岩欣,董世运. 基于金属磁记忆评价裂纹埋深对激光熔覆层应力的影响*[J]. 金属学报, 2016, 52(2): 241-248.
[14] 徐滨士,方金祥,董世运,刘晓亭,闫世兴,宋超群,夏丹. FV520B不锈钢激光熔覆热影响区组织演变及其对力学性能的影响*[J]. 金属学报, 2016, 52(1): 1-9.
[15] 叶兴龙, 刘枫, 金海军. 压缩变形纳米多孔金电化学驱动性能研究*[J]. 金属学报, 2014, 50(2): 252-258.